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Abstract

This paper provides new evidence on the origins and effects of the opioid crisis,

emphasizing the critical role played by the pharmaceutical industry. Drawing

on unsealed records from litigation against Purdue Pharma, we uncover rich ge-

ographic quasi-exogenous variation in the marketing of OxyContin, to causally

connect supply-side factors to the origin of the opioid crisis. Our results indicate

a strong causal link between Purdue Pharma’s promotional targeting and future

increases in the level of prescription opioids. We then use this variation to quantify

the epidemic’s effects on the wellbeing of adults and its inter-generational impact.

We estimate that the rise in the access to potent prescription opioids is responsible

for a dramatic increase in opioid mortality as well as far-reaching declines in the

quality of life, measured by the share of the population on SNAP. Further, it trig-

gered inter-generational effects through its impact on fertility and birth outcomes.
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I. Introduction

Over the past two decades, mortality from opioid overdoses in the United States has

increased at an alarming rate, claiming the lives of over 700,000 individuals (CDC, 2023a;

CDC, 2023b). These tragic losses coincide with an increase in the level of prescription

opioids per capita, which grew 232% from 1997 to 2018 (DEA, 2020). Prescription opioids

are highly addictive. Even at medically prescribed doses and within short periods of

time, they can lead to physiological dependence, with users experiencing tolerance and

withdrawal (Sharma et al., 2016; Hah et al., 2017). The potential effects of the rise in the

supply of prescription opioids stretch beyond the increase in overdose deaths and include

transitions to the use of illegal opioids such as heroin and fentanyl and declines in one’s

ability to work, recover from illness, and care for children, among other daily activities

(Alpert et al., 2018; Lynch et al., 2018; Meinhofer and Angleró-Dı́az, 2019; Buckles et al.,

2022).

Understanding how we arrived at this situation and the extent of the consequences of

the opioid crisis is challenging given the non-random variation in the use of prescription

opioids across geographies and over time (Ruhm, 2019; Currie and Schwandt, 2021). On

the one hand, deteriorating socio-economic conditions in certain geographic areas could

cause an increase in the demand for opioid painkillers and also explain the subsequent de-

cline in the same areas, which would lead to negatively biased estimates (Carpenter et al.,

2017; Case and Deaton, 2017; Hungerman et al., 2022). On the other hand, the origin of

the epidemic coincides with dramatic supply-side changes such as aggressive marketing

of prescription opioids, a shift in physician prescribing attitudes, and an increase in the

availability of potent opioids.1 It has been documented that this increase is positively

linked to access to healthcare and the number of physicians per capita (Finkelstein et al.,

2018). As a result, areas with higher access to opioids are positively selected on these

variables, which could, in turn, attenuate the estimates of the effects of the epidemic.

In this paper, we uncovered rich geographic quasi-exogenous variation in the level

of prescription opioids to credibly link the pharmaceutical industry to the origin and

unfolding of the opioid epidemic. We also use this variation to present causal evidence of

the epidemic’s tragic consequences for the well-being of adults and its intergenerational

effects. Our approach exploits detailed features of the initial marketing of prescription

opioids, which we obtained from unsealed court records drawn from litigation against

Purdue Pharma, the manufacturer of OxyContin —a prescription opioid at the center of

the epidemic.2 Those records show OxyContin was initially promoted to the cancer pain

1See, for example, Fernandez and Zejcirovic (2018); Finkelstein et al. (2018); Schnell and Currie
(2018); Eichmeyer and Zhang (2020); Miloucheva (2021); and Alpert et al. (2022); among others.

2These court documents are from cases 07-CI-01303 Commonwealth of Kentucky v. Purdue Pharma
and case CJ-2017-816 State of Oklahoma v. Purdue Pharma et al.; C.A.No. 1884-cv-01808 Common-
wealth of Massachusetts v. Purdue Pharma et al. and Case no. 17-md-2804 (N.D. Ohio).
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market with the plan to quickly expand to the much larger non-cancer pain market. This

targeting implied that non-cancer physicians and patients in high-cancer areas were first

exposed to OxyContin promotion and gained access to potent prescription opioids to treat

moderate and chronic pain. Purdue Pharma’s later strategy to disproportionately target

top prescribers—those in the highest deciles of the opioid dispensing distribution—meant

that those initial targets always received more marketing, even in the expansion phase

of OxyContin, when the attention was not on the cancer market. Furthermore, Purdue’s

successful strategy paved the way for the widespread promotion of opioids beyond the

cancer market. Other pharmaceutical companies in the market seized this opportunity

and closely emulated Purdue’s marketing. Drawing on these insights, we exploit the

geographic variation in cancer mortality in the mid-nineties as a proxy for the cancer

pain market served by Purdue Pharma and other pharmaceutical companies to assess

the role of supply-side factors in the unfolding of the opioid epidemic. We then use this

variation as an instrument for the exposure of the opioid epidemic, allowing us to estimate

its effects on the well-being of adults and its intergenerational effects.

We collect data from multiple sources and construct a panel of commuting zones

covering the United States from 1989 to 2018.3 We use data from the Drug Enforce-

ment Agency (DEA) on the distribution of controlled substances to measure the level of

prescription opioids. We measure adult well-being as health and social assistance need,

using data on mortality from opioids and other causes from the National Vital Statistics

System (NVSS) and data on beneficiaries of public assistance—namely, the Supplemen-

tal Nutrition Assistance Program (SNAP), Supplemental Security Income (SSI)—and

social security programs—Social Security Disability Insurance (SSDI). To capture the

intergenerational effects of the epidemic, we exploit linked data on births and maternal

outcomes.

We start by showing the link between Purdue’s marketing targets when introducing

OxyContin and the future growth in prescription opioids. Specifically, we estimate a

strong positive relationship between higher cancer mortality in the mid-nineties and the

rise in prescription opioids after the launch of OxyContin. Commuting zones with the

highest cancer incidence at the time of the launch of OxyContin—those at the 95th

percentile—received 1.96 more doses of opioids per capita relative to the 5th percentile,

accounting for 64% of the growth in prescription opioids from 1999 to 2018.

Turning to the effects of the epidemic, we find three key results. In terms of opioid-

related mortality, we estimate that at its peak in 2010, an increase in mid-nineties cancer

mortality from the 5th percentile to the 95th percentile caused a 55% increase in pre-

scription opioid deaths and a 33% increase in deaths from all opioids. These deaths are

3Commuting zones are geographic areas defined to capture local economic markets. They encompass
all metropolitan and nonmetropolitan areas in the U.S. While less granular than counties; commuting
zones are much more granular than states (Tolbert and Sizer, 1996).
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concentrated in young and middle-aged adults, with no effects on those 55 and older. We

do not find effects of the rise in opioid supply on non-opioid deaths of despair, such as

suicides or other causes of death.4

Second, the opioid epidemic had important effects beyond overdose mortality. The

number of individuals participating in public assistance and social insurance programs

increased. A move from the 5th to the 95th percentile of mid-cancer mortality corresponds

to a 32% increase in the share of SNAP recipients and a 35% increase in the share of

the population receiving SSDI. We also find an 8% increase in the share of population

receiving SSI. Third, we document intergenerational effects. We estimate a 6% increase

in fertility rates, driven entirely by increases in non-marital births. We find an increase

in the share of infants born with a low birth weight of 5%, and a worsening of APGAR

scores by 0.64%.5 We estimate that there was no effect on infant mortality, but we find an

increase in the APGAR score of infants who died in the first year, meaning that healthier

infants died. Taken together, these results point to a general deterioration in the lives of

adults with serious consequences for their children’s health.

Our identification strategy requires that in the absence of OxyContin’s marketing,

outcomes in areas with higher cancer mortality would have exhibited the same trends

as in areas with lower cancer mortality (Goldsmith-Pinkham et al., 2020). To test this

identifying assumption, we use an event-study approach and investigate the possible

presence of differential pre-trends. We do not find any evidence of a relationship between

mid-nineties cancer mortality and growth in our outcome variables before the launch of

OxyContin. In contrast, reduced-form event-study graphs show that for the period soon

after the introduction of OxyContin, our instrument predicts higher opioid mortality, a

higher share of the population receiving SNAP and higher fertility rates. In addition, we

document that areas with higher cancer mortality were not on a differential trend with

respect to other socioeconomic variables that affect outcomes, such as education, income,

or other health variables.6 That is not to say that the variation in cancer mortality

across space is randomly distributed. In fact, we find strong demographic predictors of

cancer, such as the share of the population over 65 and the Hispanic population share.7

What is needed to establish a causal interpretation—and what we provide evidence to

substantiate—is that areas with high and low cancer mortality were on the same trends

4Our measure of deaths of despair follows Case and Deaton (2017)’s definition but excludes drug
overdose deaths; these are counted in the prescription opioid and all-opioid death categories. More
details on these definitions are provided in Section III.

5The APGAR score is a measure of the physical condition of a newborn infant. It is obtained by
adding points (2, 1, or 0) for heart rate, respiratory effort, muscle tone, response to stimulation, and skin
coloration; a score of 10 represents the best possible condition.

6For example, we find that commuting zones with high and low cancer mortality were on the same
trend regarding suicide mortality and the share of employment in manufacturing and mining industries.

7We control flexibly for the baseline share of Hispanics and the share of individuals over 65 years old
by including year-dummies interactions with these two control variables, and estimates of the first stage
and reduced form coefficients are robust to their inclusion.

4



in terms of underlying health and economic outcomes.

Further, we propose two placebo exercises to probe the validity of our strategy. First,

we show that mid-1990s mortality rates from other causes, such as cerebrovascular disease

mortality, are not predictive of the future prescription opioid distribution. In a second

placebo exercise, we relate cancer mortality in 1980-1981 to the evolution of the outcomes

of interest before the launch of OxyContin. That is, we test if there is a relationship

between lagged cancer mortality and the growth of our outcomes outside the analysis

period. We find no evidence of such a link. Both of these exercises suggest that the

connection between cancer mortality and prescription opioid distribution is not driven by

other underlying health trends but by the link created by the pharmaceutical industry’s

marketing of opioids. Finally, our results are not driven by differential exposure to Chinese

import competition, the 2001 economic recession, or unemployment at the time of the

introduction of OxyContin.

The contribution of this paper is twofold. First, we provide new evidence that links

the origin and unfolding of the opioid epidemic to the marketing strategy of OxyContin

and the pharmaceutical industry. While a large literature documents the role of supply-

side factors as contributing forces to the epidemic, its origins remain understudied.8 We

build on the work of Alpert et al. (2022), who use state-level variation in the regulation

regarding the prescription of opioids. They show that five states with early versions

of prescription drug monitoring programs (PDMPs), or triplicate prescriptions, received

less marketing from Purdue Pharma and reported lower levels of prescription opioids and

fewer overdose deaths.9 In this paper, we exploit richer commuting zone-level variation

in the initial marketing strategy of OxyContin to provide new evidence linking its launch

to the origin and unfolding of the opioid epidemic.10

The proposed variation in marketing strategies allows us to account for important

confounders at the state and year level and serves as a rich instrument for future work on

the epidemic. During this period, there was widespread variation in state-level responses

to curb the opioid epidemic, such as the implementation of Prescription Drug Monitoring

Programs (PDMP), the regulation of “pill mill” clinics, and the availability of naloxone.11

8Eichmeyer and Zhang (2020) and Schnell and Currie (2018): physicians; Powell et al. (2020): access
to healthcare; and Fernandez and Zejcirovic (2018) and Miloucheva (2021): pharmaceutical promotions,
among others.

9These early versions of PDMPs were often referred to as “triplicate” programs. Our reading of
Purdue and other pharma industry and academic documents suggests that the industry’s perception of
what constitutes a “triplicate” program could differ from the designation used by Alpert et al. (2022).
Appendix C.3 examines this evidence and extends the analysis in Alpert et al. (2022).

10Previous literature often relies on changes in the access to prescription opioids induced by the
adoption of state-level policies, e.g., PDMPs, to indirectly assess the impact of the opioid epidemic on
a broad set of outcomes. See Meara et al. (2016), Buchmueller and Carey (2018), Evans et al. (2020),
Ziedan and Kaestner (2020), and Gihleb et al. (2022). There is, however, debate on what constitutes
an operational or mandatory PDMP; the definitions vary across the literature, making it difficult to
leverage this variation to estimate the effects of the opioid epidemic.

11The term “pill mill” is typically used to describe a doctor, clinic, or pharmacy that prescribes or
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Additionally, we quantify the gains in power from this empirical strategy and source of

variation. Simulation exercises suggest that we can identify effects that are 25% of the

size of those based on the empirical strategy proposed by Alpert et al. (2022)12.

Second, this paper is the first to document the direct effects of the epidemic on im-

portant health and social insurance and public assistance beyond overdose mortality.13

Mortality from opioids is only one of the many social costs associated with drug use.

In 2019, an estimated 10.1 million people in the U.S. aged 12 or older misused opioids

(SAMHSA, 2020). These numbers are orders of magnitude larger than the number of

deaths. We document the effects on the demand for disability benefits and on participa-

tion in one of the largest antipoverty programs in the United States, SNAP, which has

not been studied before. Our work is related to that of Savych et al. (2019), who find

evidence that an increase in long-term opioid prescribing behavior leads to a considerably

longer duration of temporary disability, and to the work of Park and Powell (2021), who

document that the rise in access to and consumption of illicit opioids such as heroin and

fentanyl increased disability applications by 7%. Finally, we also document the intergen-

erational impacts of the opioid epidemic. The epidemic has primarily affected individuals

in early adulthood through mid-life, with potential costs beyond the generation directly

affected. Heil et al. (2011) and Caudillo and Villarreal (2021) document a positive cor-

relation between opioid use and unintended pregnancies and between opioid overdose

deaths and non-marital births. We provide the first causal estimates of the effects on

fertility and the first estimates of the direct effects on birth outcomes.

II. Background: The Marketing of OxyContin and the Opioid

Epidemic

In 1996, Purdue Pharma introduced OxyContin to the market. When patented, OxyCon-

tin was described as a controlled-release oxycodone compound that substantially reduces

the time and resources needed to titrate patients who require pain relief on opioid anal-

gesics (Oshlack et al., 1996; Quinones, 2015).14 Two key technological innovations are

responsible for its success. First, its long-acting formula provided an extended window

of pain relief, an improvement over the standard practice of 6-8 hours. Second, it is

dispenses controlled prescription drugs inappropriately (Malbran, 2007). Naloxone is a drug that can
reverse an opioid overdose if administered quickly. The level of naloxone access varies by state and over
time. Between 2001 and 2017, every U.S. state passed a law that facilitates the widespread distribution
and use of naloxone (Doleac and Mukherjee, 2019).

12See Appendix C.2 for detailed definitions.
13There is a large literature that documents the indirect effects of the epidemic, by evaluating the

effects of policies aimed at curving the epidemic and then looking at the effects on downstream outcomes.
This literature includes: Buchmueller and Carey (2018), Evans et al. (2020), Ziedan and Kaestner (2020),
and Gihleb et al. (2022); among others.

14Oxycodone is a semisynthetic opioid that is 50% more potent than morphine and is prescribed for
acute pain management.
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a single-agent narcotic, so there is no ceiling on the amount of oxycodone per tablet.15

Both of these factors significantly increased patients’ access to potent doses of opioids and

augmented the risk of dependency and use disorder. For example, Percocet was the most

common oxycodone product on the market before 1996 and was mostly sold in the form

of 2.5 mg of oxycodone per tablet. In contrast, the most common forms of OxyContin

were 20 mg and 40 mg tablets of oxycodone, while 80 mg and 160 mg tablets were also

available. Furthermore, OxyContin users rapidly learned that crushing or dissolving the

pill causes the oxycodone to be delivered all at once—instead of the slow release over 12

hours—which induces strong euphoric effects.

Prior to the introduction of OxyContin, pain management focused on cancer and

end-of-life pain treatment. Patients who suffered from debilitating chronic pain but did

not have a terminal illness were excluded from long-term therapy with opioids, based

on care providers’ fears of the risk of severe addiction (Melzack, 1990). In this context,

MS Contin, a drug also produced by Purdue Pharma, was the gold standard for cancer

pain treatment. OxyContin’s development was in response to the generic competition

Purdue Pharma expected to face when MS Contin’s patent protection expired in 1996.

In their words:“Because a bioequivalent AB-rated generic control-release morphine sulfate

is expected to be available sometime during the later part of 1996, one of the primary

objectives is to switch patients who would have been started on MS Contin onto OxyContin

as quickly as possible” (OxyContin Launch Plan, September 1995).

OxyContin was intended to take over MS Contin’s market and gain ground in the

much larger non-cancer pain treatment market, in which opioids were almost absent.

Nonetheless, establishing the use of OxyContin for moderate and chronic pain was not an

easy task; it was clear to Purdue that they were going to face pushback when expanding to

the non-cancer market. Specifically, based on physicians’ focus groups in 1995, Purdue

concluded that “there is not the same level of enthusiasm toward this drug for use in

non-cancer pain as we identified in cancer pain” (Purdue Pharma, 1995). The two main

barriers Purdue Pharma faced were (i) the fear and stigma related to the use of opioids

for non-terminal or non-cancer pain and (ii) the administrative barriers physicians and

pharmacies had to overcome to prescribe and sell Schedule II drugs.

To overcome these obstacles, Purdue deployed a comprehensive marketing strategy

based on three main pillars. First, to effectively change physician prescribing behaviors,

Purdue Pharma implemented an aggressive marketing plan that pushed the message of

an untreated pain epidemic that affected millions of Americans on a daily basis. Pain

was introduced as the fifth vital sign, with the goal of encouraging the standardized

evaluation and treatment of pain symptoms (Jones et al., 2018). This messaging also

15Other oxycodone products on the market were a combination of oxycodone and ibuprofen or ac-
etaminophen, and the toxicity of the former sets a limit on the amount of active ingredients in the
formula.
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included misleading statements—for instance, that opioid addiction rates were lower than

1% and that oxycodone was weaker than morphine when it is 50% more potent.16

Second, OxyContin was promoted directly to physicians by the largest and highest-

paid sales force in the industry.17 The continuous promotion of OxyContin through

advertisements, gifts, and promoted medical literature was delivered through repeated

visits and calls to physicians. Furthermore, the marketing team carefully tracked physi-

cian prescription habits to optimize and personalize their detailing messages.18 These

promotional efforts quickly translated into a growing number of prescriptions from Oxy-

Contin (Figure A1).

Third, Purdue focused its initial marketing efforts on the physicians and pharmacies

who faced less stigma around opioids and who knew how to navigate the paperwork

related to the distribution of Schedule II drugs: Those in the cancer pain market. On

repeated occasions, Purdue states clearly that: “OxyContin Tablets will be targeted at

the cancer pain Market.” (OxyContin Team Meeting, April 1994).“OxyContin primary

market positioning will be for cancer pain.” (OxyContin Team Meeting, March 1995).“At

the time of launch, OxyContin will be marketed for cancer pain.” (OxyContin Launch

Plan, September 1995). This, however, was only intended as their entering path to the

larger non-cancer pain market. Purdue explicitly stated that:

“The use of OxyContin in cancer patients, initiated by their oncologists and

then referred back to FPs/GPs/IMs, will result in a comfort that will enable

the expansion of use in chronic non-malignant pain patients also seen by the

family practice specialists” (OxyContin Launch Plan, September 1995).

That is, Purdue exploited its previously established network of cancer patients and

their physicians to introduce its newest product to the broader pain market. This strategy

also solved additional logistical problems related to the sales of Schedule II drugs, such as

OxyContin. At the time of launch, only about half of the pharmacies in the country had

the paperwork required to sell Schedule II drugs, and because “pharmacists are generally

reluctant to stock Class II opioids”, Purdue decided that their “initial targets will be the

25,000 stores who stock MS Contin”, where there was no additional paperwork or training

required for pharmacies to stock OxyContin.

16“We are well aware of the view held by many physicians that oxycodone is weaker than morphine.
We all know that this is the result of their association of oxycodone with less serious pain syndromes. This
association arises from their extensive experience with and use of oxycodone combinations to treat pain
arising from a diverse set of causes, some serious, but most less serious. This ‘personality’ of oxycodone
is an integral part of the ‘personality’ of OxyContin.” Exhibit 11 from Richard Sackler’s—chairman and
president of Purdue Pharma—deposition, August 28, 2015.

17The average sales representative’s annual salary of $55,000, was complemented by annual bonuses
that averaged $71,500, with a range of $15,000 to nearly $240,000 (Van Zee, 2009).

18From 1996 to 2000, Purdue increased its total physician call list from approximately 33,400 to
approximately 70,500 physicians; United States General Accounting Office (2003). See Figure A2 for
details on the targeting of top deciles prescribers by Purdue Pharma.
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Purdue’s marketing strategy succeeded in making the use of highly addictive opioids

standard practice in the treatment of moderate and chronic pain for a wide range of

conditions. By 2003, nearly half of all physicians prescribing OxyContin were primary

care physicians (Van Zee, 2009). This strategy also opened the door for other phar-

maceutical companies to promote their prescription opioids beyond the cancer market

following Purdue’s leadership. These companies—Janssen, Endo, Cephalon-Teva, Ac-

tavis, Insys, and Mallinckrodt—who are also part of dozens of lawsuits for their role

in the opioid epidemic, closely shadowed OxyContin’s marketing intending to grow by

reducing OxyContin’s market share:“Success means increasing Duragesic share at the ex-

pense of OxyContin” (Sales Force Memorandum, 2001, Janssen Exhibit S0510, State of

Oklahoma v. Purdue Pharma et al.).19

Finally, Purdue’s later strategy to promote only to top opioid prescribing physicians,

those in the highest three deciles of the distribution (Figure A2), meant that areas with

high initial promotion as a result of the cancer market focus, also observed higher future

promotion when Purdue’s plan shifted to the broader pain market.20 This created a

path dependency that made initial targets always relevant even when the distribution of

opioids expanded.

For our identification purposes, Purdue’s marketing strategy means that areas with

a higher incidence of cancer at the time of the launch of OxyContin received a dispro-

portionate amount of marketing and prescriptions for OxyContin and other opioids. In

practice, this created a spillover in high-cancer communities from cancer patients, to non-

cancer patients, through their common physicians. In this context, the ideal instrument

is a measure of the cancer market Purdue Pharma was serving with MS Contin prior

to the introduction of OxyContin. Hypothetically, there are multiple ways to proxy this

market. One is to use mid-nineties MS Contin prescription rates as this was Purdue’s

gateway to the non-cancer pain market. However, for the period of analysis, these data

are not available at the county or commuting zone level. Alternatively, we could lever-

age the State Drug Utilization Data (SDUD), which reports the number of prescriptions

paid by Medicaid agencies at the state level. This dataset does not allow us to exploit

within-state variation. However, it is useful to document that, at the state level, there

is a strong relationship between MS Contin prescription rates and mid-nineties cancer

mortality prior to the launch of OxyContin (see Figure A3).21

19Duragesic is a fentanyl patch manufactured by Janssen, the pharmaceutical company of Johnson&
Johnson.

20Other pharmaceutical companies follow this strategy. For example, Janssen referred to high decile
prescribers as their highmost important customers in a Sales Force Memorandum for Duragesic in 2001.

21From reading court litigation’s documents, we know that at that time, Purdue had access to ex-
tremely granular prescription drugs data through a firm called IMS (later called Xponent and today
called IQVIA). We have contacted IQVIA to inquire about these data, and they stated they do not keep
any historical data records. A plausible alternative instrument is the number of oncologists per capita.
This measure, however, is far too concentrated in the largest commuting zones.
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We proxy the market served by Purdue Pharma using cancer mortality between 1994

and 1996. This variable is available at the county level and is accurately and consistently

measured throughout the period. Additionally, it has a close connection to the rates

of cancer patients who are using opioid painkillers to manage cancer pain (e.g., MS

Contin), especially in the later stages of cancer treatment.22 This instrument allows for

the identification of the role of the pharmaceutical industry in the origin of the crisis and

to estimate the causal effect of the opioid epidemic on important community outcomes.

III. Data

A. Prescription Opioids

We digitize historical records from the Automation of Reports and Consolidated Orders

System (ARCOS) of the Drug Enforcement Administration (DEA). These reports contain

the distribution records of all Schedule II substances by active ingredient (e.g., oxycodone,

hydrocodone, and morphine) at the 3-digit ZIP code level—the smallest geographic unit

available—from 1997 to 2018.23 We construct a geographic crosswalk from 3-digit ZIP

codes to commuting zones using Geocorr (a geographic correspondence engine) powered

by the Missouri Census Data Center. Our main independent variable is grams of pre-

scription opioids per capita at the commuting-zone level; this corresponds to the sum of

oxycodone, codeine, morphine, fentanyl, hydrocodone, hydromorphone, and meperidine

in morphine-equivalent mg. The group of drugs included in the ARCOS changes over

time—e.g., to account for changes in the classification of an ingredient. Nonetheless, we

focus on a set of prescription opioids that can be tracked consistently over the period

of analysis. We report all ARCOS measures in morphine-equivalent doses, equal to 60

morphine-equivalent mg.

The first panel of Table 1 presents summary statistics of shipments of all prescription

opioids and the three main controlled substances: oxycodone, hydrocodone, and mor-

phine. Oxycodone represents around half of all prescription opioid shipments, and the

average commuting zone receives 3.15 per capita per year. This number masks substantial

geographical variation. While some commuting zones received no doses, others report as

much as 51.31 oxycodone doses per capita in a given year, Map 1 shows this variation.

Figure A4 shows the rapid growth of prescription opioids over time and the dominant

22An additional measure of cancer incidence is the rate of cancer patients in the population. Unfor-
tunately, incidence measures reported by the CDC and the Surveillance, Epidemiology, and End Results
(SEER) program are aggregated at the state level. Importantly, the two measures are highly correlated:
the correlation coefficient is 0.88.

23ARCOS system data are available online from 2000 to the first half of 2022. We retrieved and
digitized the reports up to 2018, the last year of our sample. For periods before 2000, we used the
WayBack Machine application to access reports from 1997 to 1999. These data are available here.
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role of oxycodone in such growth. Additional summary statistics on opioids shipment

over time are presented in Table A1.

B. Cancer Mortality

To proxy the cancer market served by Purdue Pharma at the time of OxyContin’s launch,

we construct the average cancer mortality rate between 1994 and 1996 at the commut-

ing zone level using a restricted-access version of the Detailed Multiple Cause of Death

(MCOD) files.24 These files record every death in the US along with the county of resi-

dence, the underlying cause of death, and up to 20 additional causes and thus represent a

census of deaths in the US. The 1989-1998 data use ICD-9 codes to categorize the cause

of death, and the 1999-2018 data use ICD-10 codes.25 Map 2 shows large variation in

average cancer mortality in 1994 and 1996.

C. Outcome measures and control variables

Opioid mortality. We construct two main measures of opioid-related deaths: prescription

opioids and all opioid deaths following definitions in CDC (2013a), Ruhm (2018), and

Alpert et al. (2022). The prescription opioids category captures deaths whose under-

lying cause is substances usually found in prescription painkillers such as hydrocodone,

methadone, morphine, and oxycodone, among others.26 We also consider a broader mea-

sure of opioid-related deaths, in which we include deaths from heroin and synthetic opi-

oids, e.g., fentanyl.27 Map 3 shows this geographical variation; mortality rates vary from

no deaths to as many as 106 per 100,000 residents in the most affected commuting zones.28

Deaths of despair. We also study how the opioid epidemic affected other deaths

of despair. Case and Deaton (2015) define deaths of despair as deaths by drug and

alcohol poisonings, suicide, and chronic liver diseases and cirrhosis. Our measure of

deaths of despair does not include drug poisonings as these are counted in prescription

and any opioids deaths separately in our analysis. That is, our measure is limited to

24We also consider age-adjusted cancer mortality and test if our results are sensitive to any of the
years used as our baseline cancer mortality measure. We find very similar and strong first-stage estimates
across these alternative measures, see Section VI.A.

25We construct cancer deaths as those from malignant neoplasms (codes 140-208 in ICD-9 data and
C00-C97 in ICD-10 data) and in situ neoplasms, benign neoplasms and neoplasms of uncertain or un-
known behavior (codes 210-239 in ICD-9 data and D00-D48 in ICD-10 data).

26We follow the prescription opioids definition of CDC (2013a) and use identification codes X40–X44,
X60–64, X85, or Y10–Y14 with contributing causes T40.2 and T40.3 to specify prescription-opioid-
related overdoses in the ICD-10 data and codes 965.00, 965.02, 965.09, E850.1, and E850.2 in the ICD-9
data. We exclude deaths with contributing cause T40.4 from this definition since these deaths include
synthetic opioid involvement, e.g., fentanyl (Ruhm, 2018).

27We use identification codes X40–X44, X60–64, X85, or Y10–Y14 with contributing causes T40.0-
T40.4, to count deaths from any opioid in the ICD10-data and codes 965.00, 965.01, 965.02, 965.09,
E850.0, E850.1, and E850.2 in the ICD-9 data.

28The CDC reports that the transition from the ICD-9 to ICD-10 resulted in a small increase in
poison-related deaths of 2% (Warner et al., 2011).
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deaths from suicide, chronic liver disease, cirrhosis, and poisonings that are attributable

to alcohol—these deaths amount to, on average, 79% of the deaths studied by Case and

Deaton (2017).29

Demand for social insurance and welfare programs.30 We construct a measure of

SNAP benefit recipiency rates at the commuting-zone level, using data from the Food

and Nutrition Service of the Department of Agriculture. In particular, we use data

on county-level participation in the month of January for all years spanning 1989-2018,

focusing on beneficiaries of Food Stamps (FSP) and Electronic Benefit Transfers (EBT)

in the context of the program. We then aggregate the county-level counts to compute

the share of beneficiaries in the population at the commuting-zone level.31 We include

two measures of disability benefits recipiency, constructed as the share of the population

that receives Supplemental Security Income (SSI) and who is blind or disabled, and the

share of the population 18 to 65 that receives Social Security Disability Insurance (SSDI).

Information on the total number of SSI recipients in each county is based on SSI Annual

Statistical Reports and Old Age, Survivors, and Disability Insurance (OASDI) reports

prepared by the National Social Security Administration, which we aggregate at the

commuting-zone level.32

Birth outcomes and fertility. Data on birth outcomes come from the Linked Birth and

Infant Death Data of the National Vitals Statistic System (NVSS). The microdata for

each year between 1995 and 2018 include the deaths of all infants born in that calendar

year for which the death certificate can be linked to a birth certificate and all births

occurring in a given calendar year.33 We construct infant mortality as the ratio of infant

deaths to live births in a given calendar year. The Linked Birth and Infant Death Data

also include data on the infant’s condition at birth, such as weight and length of gestation.

The main measures of infant health we compute from the birth files are the commuting–

zone-level (i) share of low-birth-weight newborns, (ii) APGAR score of all births, (iii)

APGAR score of deceased infants, and (iv) median pregnancy duration. Finally, we use

29We use identification codes K70, K73-74 to count deaths from alcoholic liver diseases and cirrhosis
in the ICD10-data and codes 571.0 – 571.4 and 57109 in the ICD-9 data. We count deaths from suicide
using codes X60-84 and Y87.0 in the ICD10-data and codes E950-E959 in the ICD-9 data. Deaths from
alcohol poising are counted using codes X45 and Y15 in the ICD10-data and codes E850-E858, E860,
and E980.1 in the ICD-9 data.

30Our choice of outcomes is driven by our priors on first-order effects on communities’ well-being and
by the availability of granular geographic data. Labor market outcomes and foster care placement rates
are outcomes we hypothesized are relevant; however, data availability prevents us to study these topics.

31When information at the local level is not available, we impute the state-level share of SNAP
recipients. Table A10 shows the result for the sample of commuting zones that do not require state-level
imputation. Our results are not sensitive to this sample restriction.

32We observe the number of beneficiaries at a given point in time but do not observe the number
of beneficiaries entering or exiting the programs. Thus, we cannot speak to the question of whether a
change in the stock is due to people entering more quickly or receiving benefits for a longer time.

33At least 98% of deaths are linked to their corresponding birth certificate. This figure varies by year;
e.g., in 2018, 99.3% of all infant deaths were successfully linked, while in 1998, 98.4% of death records
were linked.
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the birth files to compute the average fertility rate at the commuting-zone level, defined

as the ratio of single pregnancies to female population aged 15 to 44 years old.34,35

Demographic controls. Data on population counts comes from the Survey of Epidemi-

ology and End Results (SEER), which reports population at the county level and by age,

race, sex, and Hispanic origin. We use these data to construct the denominators for adult

mortality rate measures, e.g., opioid and aggregate mortality. Denominators for infant

mortality rate come from the “Denominator File” provided by the NVSS.

In sum, we build a data set at the commuting-zone level, covering the period from

1989 to 2018 for our outcome variables and the instrument. We choose commuting zones

as our unit of observation since it is the geographic space that captures one’s economic

life—which often spans beyond county borders—and the access to the local market for

prescription opioids.36,37 ARCOS data are available from 1997, so analyses using this

measure are restricted to a later period.38 We restrict our sample to areas with more

than 25,000 residents. This represents 99.8% of all opioid deaths and 99.3% of the total

population. Our final dataset is a balanced panel of 590 commuting zones and consists

of 17,110 observations.

IV. Empirical Strategy

Supply factors, such as the density of the healthcare network, and demand factors, such

as the incidence of pain in the population, affect the level of prescription opioids and

may also affect the evolution of our outcome variables. Table A3 shows that the distri-

bution of opioids is not random across space, but rather is related to the demographic

composition of the commuting zone and its economic performance. A greater share of the

white population and higher median income at the commuting-zone level have a positive

correlation with prescription opioids per capita; the share of the Hispanic population, the

employment rate, and the demand for social insurance have a negative correlation.39 This

is in line with Finkelstein et al. (2018), who estimate that areas with more physicians per

34We follow the CDC’s definition to compute the aggregate or general fertility rate. In additional
results, we also present fertility rates for other age breakdowns.

35Data for the period 1989-1994 come from the Natality Birth Files. These files provide demographic
and health data for all births during the calendar year. We use these data to construct infant mortality
rates, birth weight, fertility rate, and APGAR scores, though these data do not allow us to construct
pregnancy duration.

36We will miss prescription opioid use from those willing to cross commuting-zone lines to obtain
opioid prescriptions. Nonetheless, the literature suggests that this is a rare behavior (Buchmueller and
Carey, 2018).

37We use the crosswalks developed by Autor and Dorn (2013) to go from county-level to commuting-
zone-level aggregates. Some commuting zones cross state borders. When this happens, the commuting
zone is assigned to the state where the higher share of the zone’s population is located. This criterion
helps to preserve the strong within-cluster and weak between-cluster commuting ties.

38Table A2 presents summary statistics for the pre-Oxycontin launch period.
39We also find a small negative correlation between the share of employment in the manufacturing

industry and opioid prescription rates.
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capita, higher levels of income and education, lower Medicare spending per capita, and

higher scores on a healthcare quality index have higher opioid abuse rates.

To identify the effect of the opioid epidemic, we exploit rich geographical variation in

the promotional efforts of prescription opioids as an exogenous source of variation in the

exposure to the opioid epidemic. We start by running the following specification—the

first stage relationship between prescription opioids and mid-nineties cancer mortal-

ity—over our sample of commuting zones for the period 1997-2018:

First Stage:

∆ Presc. Opioidsct = α1 + ϕ CancerMRct0 + α ∆ Xct + γst + υct , (1)

where c indexes commuting zones, t indexes years, s indexes states, and t0 is defined as the

average of the pre-OxyContin period. The operator ∆ works as follows: For any random

variable Wct, ∆Wct equals the difference Wct − Wct0 ; we refer to this operation as the

long-change of variable Wct. Presc. Opioidsct corresponds to doses of opioids per capita

shipped to commuting zone c in year t and CancerMRct0 is the cancer mortality rate in

commuting zone c in 1994-1996 (t0). The control variables included are contemporaneous

cancer mortality, share of the population over 66, share of the population 18-65, share of

the population under 1 year, shares of the white and black populations, share of females,

and share of Hispanic population.

We add state times year fixed effects represented by the term γst. These fixed effects

control for the variation in outcomes over time that is common to all commuting zones

within state s, and purge the variation in the supply of prescription opioids that results

from a change in state-level policies—such as the implementation of a PDMP, access

to naloxone, and regulation of “pill mills”. These policy changes were quite common,

for example, between 2007 and 2013, 17 states implemented some version of a PDMP

(Buchmueller and Carey, 2018). Between 2001 and 2017, every US state passed a law

that facilitates the widespread distribution and use of naloxone (Doleac and Mukherjee,

2019). Since our exogenous variation is at the commuting-zone level, we cannot include

commuting-zone fixed effects in the regression. However, by expressing our variable in

changes, we can partially absorb some of the variation that is specific to the commuting

zone. We cluster standard errors at the commuting-zone level.

We examine how changes in the supply of prescription opioids relate to the initial

cancer mortality rate—our measure of the market initially targeted by pharmaceutical

companies. Thus, ϕ captures the growth in the supply of prescription opioids per capita

for an additional point increase in cancer mortality. For this estimation to be valid, cancer

mortality at baseline should be (i) strongly correlated with the opioid supply, and (ii)

uncorrelated with unobservable variables related to our outcomes. Evidence supporting
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our strategy was first presented in Section II., in which we discussed Purdue Pharma’s

and competitors marketing strategies and the rationale for focusing on the cancer market

as the place to start and expand from. Next, we provide empirical evidence to support

this strategy and assess threats to its validity.

A. Does cancer mortality in the mid-1990s predict growth in the supply of

prescription opioids?

We start by providing graphical evidence in panel (a) of Figure 1. We divide commuting

zones into quartiles according to their level of cancer mortality before the launch of

OxyContin and trace the evolution of all prescription opioids, oxycodone, hydrocodone,

and morphine in these communities. Panel (a) of Figure 1 shows the evolution of the

aggregate of prescription opioids per capita in commuting zones in the bottom and top

quartiles of cancer mortality in 1994-1996, as well as the evolution of oxycodone—the

active ingredient of OxyContin, which accounts for the largest share of this growth. It is

clear from the graph that communities with high rates of cancer experienced a much larger

influx of prescribed oxycodone (solid orange line) than low-cancer communities (dashed

orange line), even though the two groups started the period with a comparable prevalence

of oxycodone. Specifically, between 1997 and 2010, areas in the highest quartile of cancer

incidence saw an increase in oxycodone gm per capita of 2,900%, and areas in the lowest

quartile experienced a growth that was one-third of that, even though the incidence of

cancer varied equally across the two groups, as shown in Figure A5.

Table 2 shows the results of the first-stage regression defined in Equation 1. Col-

umn 1 is a bivariate regression of prescription opioids per capita on cancer mortality at

t0. Columns to the right add time-varying controls and different specifications of fixed

effects. Our preferred specification is the one in column 5, in which we control for state-

times-year fixed effects and our covariates. Across all specifications, there is a positive

and strong relationship between cancer rates in the mid-1990s and the change in opioids

per capita. A one-unit (one-standard-deviation) increase in 1994-1996 cancer mortality

increases the change in prescription opioids per capita relative to 1997 by 1.1 (0.13 stan-

dard deviation).40 To put this figure in context, a change from a commuting zone in

the 5th percentile of the cancer distribution to the 95th percentile explains 64% of the

increase in opioids relative to the base period.

We show the strength of this relationship graphically in panel (b) of Figure 1 where

we plot the first stage coefficients by year following this specification:

40We follow Andrews et al. (2019) recommendations and present the effective first-stage F statistic
proposed by Montiel Olea and Pflueger (2013) to assess the strength of the first stage. In the rest of this
paper, we refer to this as the effective F-stat.
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First Stage - Event study:

∆ Presc. Opioidsct = α1 +
2018∑

τ=1998

ϕτ CancerMRct01(Y ear = τ) + α∆Xct + γst + υct , (2)

where ϕτ captures the relationship between cancer mortality and prescription opioids by

year. We find that starting in 1998, the second year of the opioids data, and until 2018, the

last year in our data, there is a positive and statistically significant relationship between

cancer mortality rates and prescription opioids per capita. However, due to the limited

data availability on the illicit opioid market, our first stage analysis underestimates the

impact of the initial marketing of opioids on the overall level of both legal and illegal

opioid use. Previous research has established a strong causal link between prescription

opioid use and illegal opioid use (Alpert et al., 2018; Evans et al., 2019).

Our hypothesis is that the connection between pre-OxyContin cancer rates and future

opioid inflows is generated by the marketing efforts from Purdue and other pharmaceu-

tical companies. Unfortunately, most of the data that could test this hypothesis is still

confidential. We perform two exercises that provide evidence in this direction, one using

public data and the second, using new unsealed records we digitized. First, we examine

pharmaceutical marketing in 2013–2018 using the CMS Open Payments database. These

data report visits and payments from pharmaceutical manufacturers to physicians related

to promoting specific drugs, including payments for meals, travel, and gifts. Panels A

and B of Figure 2 show that, even 17 years after the introduction of OxyContin, the

share of visits and the share of payments to promote opioids relative to all other drugs

was higher in high-cancer commuting zones. Commuting zones at the top quartile of

the cancer distribution in the mid-nineties, relative to commuting zones in the bottom

quartile, received on average 22% more opioids-related visits, and the share of payments

was 83% higher. We interpret this as a measure of persistent effect of the initial targeting

of cancer areas by pharmaceutical companies.

Second, records from May 2007 to December 2018 on all sales representatives’ visits

to promote OxyContin in Massachusetts have been released, as part of recent litigation

(Figure A6). We digitized these data for 2007 to 2011 and created aggregate measures

at the county level of the number of visits per 1,000, and the number of targets–either

physicians or pharmacists, per 1,000. Panels C and D of Figure 2 show scatter plots

of these variables on the y-axis and mid-nineties cancer mortality on the x-axis. Both

of these measures show a positive relationship between cancer mortality at the time of

launch and persistent future marketing in those areas. This persistence of the initial

targeting is consistent with the marketing strategy discussed in the internal documents

and supports our identification strategy.

16



B. Exogeneity and exclusion restriction: Is cancer mortality in the mid-

1990s directly related to our outcome variables?

Variation in mid-1990s cancer mortality across locations is not random; rather, it de-

pends on demographic, environmental, and socioeconomic variables. In Table A4 we find

that cancer mortality is: strongly related to share of the population over 65, negatively

associated with the share of Hispanic population, and positively associated with mortal-

ity from other causes of death. There is not, however, a cross-sectional correlation with

our outcome variables: opioid mortality, shares in SNAP and disability, infant mortality

rate, or fertility. Nonetheless, the validity of our identification strategy does not require

that cancer be randomly distributed across areas, but rather that in the absence of Oxy-

Contin marketing, areas with higher cancer mortality in the pre-OxyContin period (t0)

exhibit the same trend as areas with lower cancer mortality in t0 in terms of our outcome

variables (Goldsmith-Pinkham et al., 2020).

We provide evidence to support this assumption in four ways. First, we estimate

reduced-form type regressions where we interact our instrument with year dummy vari-

ables to directly test for the presence of pre-trends, i.e., we estimate an event-study

version of the reduced form relationship between the outcome variables and our measure

of exposure to the epidemic. For each outcome variable we consider the following spec-

ification, which is run over a balanced panel of commuting zones for the years 1989 to

2018:

Reduced Form - Event Study:

∆ yct = α1 +
2018∑

τ=1989

ϕτ CancerMRct01(Y ear = τ) + α ∆ Xct + γst + υct , (3)

where ∆ is the long change operator, yct is the outcome of interest, and Xct is a vector of

time-varying control variables defined previously. CancerMRct0 is the cancer mortality

rate in commuting zone c at time t0 and it is interacted with a full set of year fixed effects

index by τ . In this specification, the coefficients for the pre-OxyContin period; i.e.,

ϕ1989, ϕ1990, to ϕ1995, test whether the outcome of interest yct in higher and lower cancer

mortality areas followed similar trends before OxyContin was introduced to the market

in 1996. This research design allows us to control for state-specific trends and state-level

policy changes which were common during this period that directly affected the supply of

opioids—e.g., the implementation of PDMP, the regulation of “pill mill” clinics, and the

availability of naloxone—and also the evolution of our outcome variables—e.g., welfare

reform and child support policies.

Figures 3, 4, 5, and 6 show the results of this estimation on our main outcomes of

interest.41 We find that areas with higher cancer mortality in the mid-nineties were not

41Figures 8 and A7 complement this analysis.
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on a differential trend along: opioid-related mortality, despair mortality, infant mortal-

ity, birth weight, fertility, or share of population using SNAP.42 There is no evidence

of pre-trends, i.e., the estimated coefficients for the pre-OxyContin period are jointly

statistically indistinguishable from zero. After the introduction of OxyContin in 1996,

strong patterns appear, and mid-nineties cancer mortality starts to predict opioid-related

mortality, demand for SNAP, and fertility.

Second, there is no evidence of a systemic relationship between lagged cancer mor-

tality and past or future overall health trends and despair. We show that young adults

entirely drive the estimated excess opioid mortality, and for adults over 55 years old opioid

mortality does not increase (see Figure 7). This supports the argument that our results

are not driven by underlying health conditions since the population over 55 would be the

closest to the population that drives the variation in our instrument and that instead,

what we observe is a spillover from the cancer population to the younger and healthier

population, through the introduction of opioids in those markets. We also report event

study estimates for suicide mortality and overall 75+ mortality —excluding cancer (see

Figure 8). We find no evidence of pre-trends for suicide and overall mortality prior to or

after the introduction of OxyContin. Finally, in Figure A8 we document that high cancer

places were not on a differential trend along health behaviors such as smoking.

Third, we perform an out-of-sample dynamic reduced-form analysis to test if lagged

cancer mortality predicts future opioid mortality before the introduction of OxyContin.

That is, we run Equation 3 over a sample of commuting zones for the years 1982 to 1995

and estimate if the average cancer mortality rate in 1980 and 1981 predicts prescription

and all opioids mortality in the next twelve years. We present the results of this analysis in

Figure 9. These results demonstrate that before the introduction of OxyContin there is no

relationship between our outcome measures and lagged cancer mortality—the estimated

coefficients are statistically indistinguishable from zero and there is no evidence of a

pattern. In Appendix Figures A10 and A11, we perform a similar exercise for deaths

of despair, SNAP, infant mortality rate, fertility rate, and the share of employment in

the manufacturing and mining industry.43 We find no evidence of a differential trends in

these variables.

Finally, for variables such as income per capita, educational attainment, or our out-

come variables SSI and SSDI rates, for which we do not have yearly data for 1989-1995,

we test whether lagged cancer mortality in 1989 and 1990, predicts changes in these vari-

ables, using a cross-sectional reduced form analysis. Table A5 presents the results of this

exercise. In column 1, we find no evidence of a relationship between cancer incidence and

relevant economic indicators, and similarly in column 2, which presents this analysis for

42Data on SSDI and SSI are not available at the county level before 1996 so we can not conduct this
exercise for such outcomes.

43We perform this exercise for the period 1989-1995 due to data availability constraints.
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our outcome variables, including SSI and SSDI, we do not find any relationship.

Taken together these results suggest that in the absence of OxyContin’s marketing,

areas with higher cancer mortality exhibit the same trends as areas with lower cancer

mortality in terms of our outcome variables and additional socio-economic measures.

V. Results

A. Effects on Opioid-related Mortality

We start by inspecting the raw data; in panel (a) of Figure 3 we split commuting zones

based on the cancer mortality distribution and document that early in the 2000s, a

wedge starts to appear between high- and low-cancer-incidence groups, and by the end of

the sample opioid mortality in high-cancer areas is 75% higher.44 Second, following the

reduced-form approach from Equation 3, we estimate that after the launch of OxyContin

a strong relationship emerges between mid-nineties cancer mortality and opioid-related

mortality as shown in Panel (b) of Figure 3.45 At its peak in 2010, an increase from the

5th to the 95th percentile of mid-nineties cancer mortality increased prescription opioids

deaths by 55% relative to its mean.

In Appendix D we estimate instrumental variables regressions, which allow us to

scale our reduced-form results by the increase in prescription opioids. The instrumental

variable estimates presented in column 3 of Table D1 implies that when doses per capita

increase by one standard deviation, mortality from prescription opioids increases by 73%

relative to the mean.46

Heterogeneous effects. The excess opioid-related mortality induced by the marketing

of prescription opioids is by and large coming from young and middle-aged adults and at

the begging of the epidemic, is driven mainly by white adults. In Figure 7, we present

the interactive-reduced-form analysis for three age groups and in Figure A12 we split

the data by race and gender. The analysis by age shows (i) no evidence of pre-trends

on opioid mortality for any of these groups, and (ii) opioid mortality increases that are

concentrated among individuals aged less than 55 years old. Furthermore, different from

the trends in prescription opioids mortality, for the case of any opioid mortality—which

adds deaths from heroin and fentanyl—the effects are persistent even in the last years

of our sample, for those under 55. Additionally, we find the epidemic affected men and

women similarly. When splitting the data by race, we find that estimates for whites

are positive and statistically significant starting soon after the launch of OxyContin.

44In Appendix Figure A9 we present the analogous analysis, but we split the data based on 8 octiles
of cancer mortality and observe the same pattern.

45In Appendix Figure 4 we replicate this analysis for any opioid mortality and document similar
patterns.

46A change from the 25th to the 75th percentile—i.e., a 5.02 dose increase—mortality from prescription
opioids increases by 88.6% and all opioid mortality increases by 39.3%.
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For non-whites it takes around a decade for estimates to be positive and statistically

significant.

B. Adult Wellbeing and Intergenerational Effects

In this section, we study whether the access to potent opioids has deteriorated the well-

being of adults by looking at overall mortality, the demand for social insurance, and

welfare programs. We then turn to the intergenerational effects of the epidemic.

Non-opioid mortality measures. We ask whether the dramatic increase in opioid sup-

ply affected all-cause mortality, excluding cancer deaths. These results are presented

in Figure A13. We find no relationship between overall mortality and the increase in

prescription opioids. To put this result into context, note that at their peak in 2017,

opioid-related deaths accounted for 1.8% of all deaths.

The introduction of effective pain medication could have improved the quality of life

of individuals with high incidence of pain and low risks of addiction, and those potential

improvements could translate into health indicators. To asses if there is any indication of

such improvements we estimate our reduced-form exercise on mortality for those 75 and

older, but find no evidence of any effects in mortality (Figure 8 Panel b).

Case and Deaton (2017) document a dramatic decline in life expectancy for white

non-Hispanic Americans, which is mostly driven by deaths from despair such as drug

overdoses, suicides, and alcohol-related liver mortality, and point to a possible connection

to the opioid epidemic. We explore this connection studying the effects of the exposure

to the opioid epidemic on non-opioid-related deaths of despair. In Figure 8 we show that

there is only a weak link between the opioid epidemic and deaths of despair. We do not

find any effect on suicides and only a small increase in alcohol-related deaths during the

last stages of the opioid epidemic, see Table D2. The category alcoholic liver diseases

includes causes of deaths such as hepatitis and related conditions, that may be directly

affected by opioid use (Ruhm, 2021), so it is possible this small effect is directly driven

by opioid use.

Beneficiaries of social insurance and welfare programs. Addiction to and misuse of

prescription opioids could deteriorate one’s health, reduce productive capacity, and put

one at risk of permanently reducing ones attachment to the economy. We document a

tight link between the opioid epidemic and an increase in SNAP and disability-programs

beneficiaries. Figures 5 and A14 show the dynamic evolution of these effects. These

results point to a substantial worsening of economic conditions. These effects are par-

ticularly strong during the third wave of the epidemic, when the incidence of illicit drug

use, such as of heroin and fentanyl, increased.

Our estimates suggest that, at its peak in 2017, a change from the 5th to the 95th

percentile in mid-nineties cancer mortality distribution caused a 32% increase in the
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share of the population enrolled in SNAP. This effect is comparable to an increase of 2

percentage points in the unemployment rate (Ganong and Liebman, 2018). Similarly, a

change from the 5th to the 95th percentile in mid-nineties cancer mortality caused a 8%

increase in the share of the population receiving SSI and a 35% increase in the share

receiving SSDI relative to its means.

Fertility and birth outcomes. An important feature of the crisis is that it has primarily

impacted a population in early adulthood through mid-life with potential intergenera-

tional costs. One in five pregnant women filled a prescription for opioids from 2000 to

2007 (Desai et al., 2014); and between 2008 and 2012, 39% of women of reproductive

age covered by Medicaid obtained a prescription for opioids. These figures, joint with

the staggering increase in the incidence of neonatal abstinence syndrome (Patrick et al.,

2015), raise concerns about the risks and consequences of opioid misuse in this popula-

tion.47 Terplan et al. (2015) document that the higher rates of unwanted pregnancies

in the population of women who take opioids is mostly driven by the lack of adherence

to contraception. Additionally, opioid use early in pregnancy, often before women know

they are pregnant, can increase the risk for some birth defects and other poor pregnancy

outcomes, such as preterm birth or low birth weight (Ailes et al., 2015).

We find substantial increases in non-marital fertility rates as a result of exposure to

the opioid epidemic. Panel a of Figure 6 shows the continue increase in fertility. At

its peak in 2017, an increase from the 5th to the 95th percentile of mid-nineties cancer

mortality increases non-marital fertility by 15%.48 Figure A15 shows that marital fertility

did not change change as result of the opioid epidemic. This is in line with cross-sectional

estimates of the higher risk of unintended pregnancies for women with opioid use disorder

(Stone et al., 2020), and with work that documents access barriers to contraceptives for

women with substance use disorders (Rinehart et al., 2021).

Regarding birth outcomes, we do not find any increase in infant mortality rate (Figure

6), but we do find suggestive evidence of declines in health at birth measured as the share

of low-weight births and a decline in APGAR scores (Figure A7). A 5th-to-95th-percentile

increase in mid-nineties cancer mortality increases the share of newborns with low birth

weight by 5% relative to its mean. We document a deterioration in APGAR scores by

around 1% relative to its mean value and an increase in the APGAR score of infants

who died in the first year, which means that healthier infants died. Additionally, we find

declines in pregnancy duration. This is particularly relevant in light of evidence on the

importance of health at birth for future health, schooling, and earnings (Behrman and

Rosenzweig, 2004).

47Neonatal abstinence syndrome is a result of the sudden discontinuation of fetal exposure to medicine
or drugs that were used or misused by the mother during pregnancy.

48We compute non-marital fertility as the ratio between births to unmarried mothers and the female
population aged 15 to 44 years old. We do this, as data on the population of unmarried females does
not exist at the year–commuting-zone level.
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In summary, our results suggest that the opioid epidemic lead to important increases

in fertility, driven by unmarried mothers. While not affecting directly the infant mor-

tality rate, the epidemic worsened birth outcomes through reductions in infant health at

birth. In 24 states and the District of Columbia, the use of any illegal substance during

pregnancy constitutes child abuse, and can lead to foster care placement. Nonetheless,

Eichmeyer and Kent (2021) document that treatment for opioid use disorder increases in

the year after childbirth, and that the timing of this increase is consistent with pregnancy

triggering treatment for a pre-existing disorder. Using, state-level data, Buckles et al.

(2022) document that greater exposure to the crisis increases the likelihood that a child’s

mother or father is absent from the household and it increases the likelihood that he or

she lives in a household headed by a grandparent. Unfortunately, after multiple efforts we

were not able to access foster care records with county or commuting zone identifiers.49

Future work is needed to quantify the effect of the opioid crisis on foster care placements,

and to assess the future outcomes for these children.

VI. Robustness Checks

In this section, we explore alternative explanations for our findings and test the robustness

of our results.

A. First Stage and Reduced Form Specification Checks

Additional demographic controls. A potential concern with using mid-nineties cancer

mortality as a proxy for the exposure to the opioid epidemic is that it may be capturing

demographic variation along the age distribution. Our baseline regression already con-

trols for the change in the share of the population over 65. However, our instrument is

expressed in levels, so some of this variation may still be important. We directly test

this by including the share of the population over 65, the size of the population over 65,

and total population as additional control variables. Table A6 shows the results of this

exercise. We find that the first stage regression is as strong as in our baseline regression.

Figure A16 shows estimates of the dynamic first stage and reduced form regressions when

we add a set of year-dummy variables interacted with the share of the Hispanic population

and the share of the population over 65 years old measured in 1994-1996. This specifica-

tion flexibly controls for the evolution of the share of the Hispanic and over 65-year-old

population, which are the main predictors of cancer mortality in 1996. Estimates of the

first stage and reduced form coefficients are similar across specifications, and the main

conclusions remain unchanged.

49The Adoption and Foster Care Analysis and Reporting System (AFCARS) provides case level data,
but county identifiers are only available for counties with more than a 1,000 cases.
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Alternative measures of our instrument. Additionally, we test the robustness of the

first stage to alternative choices of instruments. Column 1 of Table 3, replicates the

first stage with age-adjusted cancer mortality, and Panel (a) of Figure A17 presents

the corresponding dynamic first stage estimates. We find similar and strong first-stage

estimates when using age-adjusted mid-nineties cancer mortality. We also test whether

the estimated first stage is sensitive to the choice of a specific year in our baseline period.

Columns two to four in Table 3 show there is a strong first-stage for 1994, 1995, and

1996 cancer mortality, and Panel (a) of Figure A18 presents the dynamic first-stage

using cancer mortality in 1994 as the instrument. Next, in column five and Panel (b)

of Figure A17, we add population weights and find similar results. As an additional

robustness check, in Panel b of Table 3, we construct a measure of cancer mortality that

excludes deaths from lung cancer. This measure is less likely to be driven by behavioral

and environmental factors that could correlate with our outcome variables. As with

other alternative instruments, in column one, we find a strong first-stage coefficient. In

columns two to four, we use mid-nineties cancer mortality for those over 55, 65, and 75,

respectively, and find a positive and statistically significant first stage in all cases.

We also examine how these alternative versions of our instrument impact the estimates

of the reduced form coefficients. Panels (c) and (d) of Figure A17 present estimates of the

effects on prescription opioid mortality using age-adjusted cancer mortality and weighting

our baseline specification, respectively. Figure A18 uses cancer mortality in 1994 as the

instrument and shows the dynamic reduced form for prescription opioids mortality. In

summary, this battery of tests shows the robustness of the reduce-form effects and the

lack of pre-trends or anticipatory effects.

Alternative measures of prescription opioids. Even though Purdue Pharma was the

pioneer in the use of opioids in the non-cancer pain market with OxyContin, many phar-

maceutical companies—Janssen, Endo, Cephalon-Teva, Actavis, Insys, and Mallinck-

rodt—promoted their prescription opioids beyond the cancer market following Purdue’s

leadership. To assess whether the positive relationship that we observe between the total

level of prescription opioids and mid-nineties cancer mortality is present across different

opioids’ categories, in Panel C of Table 3, we split opioids between oxycodone—which

captures the supply of Oxycontin—and the rest of opioids. We find there is a strong

positive first stage for both categories.

Mechanical Effects. A potential threat to our hypothesis is that commuting zones with

higher cancer mortality would see a larger uptake of opioids from innovations in the pain

medication market, even in the absence of marketing efforts. Several facts suggest this

is not the mechanism at play. First, cancer patients had access to equally potent opioids

before the launch of OxyContin, as this was standard pain management practice. For

these patients, the introduction of OxyContin represented a switch from MS Contin—the

gold standard to treat cancer pain—to OxyContin. Second, our results suggest there is
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no evidence of misuse of opioids in the population most affected by cancer, as we find

no increases in deaths from prescriptions and non-prescription opioids for those over 55

years of age (Figure 7).

Additional sample restrictions. We test whether the positive relationship in our first

stage is driven by a state or a group of states. Figure A19 presents the estimate of the first

stage coefficient restricting the sample to (i) all non-triplicate states, (ii) only triplicate

states, and (iii) to the exclusion of all states, one at the time. We find that the positive

relationship between mid-nineties cancer mortality and the supply of opioids is present in

both triplicate and non-triplicate states, and is robust to the exclusion of any given state.

Furthermore, the first stage is stronger in the five triplicate states defined in Alpert et al.

(2022), which would be consistent with a story in which pharmaceutical companies need

to be more strategic in promoting opioids in places where they face additional barriers.50

B. Placebo checks

Are other mid-1990s mortality rates predictive of future prescription opioids per capita

distribution? Our identification strategy connects mid-1990s cancer mortality to future

growth in the supply of prescription opioids through the targeted marketing of Purdue

Pharma. This implies that we can test the validity of our design by estimating first-stage

regressions for placebo instruments—i.e., mid-1990s mortality from causes unrelated to

cancer. Finding a good placebo instrument is challenging, given that the causes that

underlie the incidence of cancer and other conditions, such as heart disease are not in-

dependent (Chiang, 1991 and Honoré and Lleras-Muney, 2006). As a result, there is

substantial overlap across underlying causes and the correlation across measures is very

high. With this caveat, in Table 4 we show placebo instrument regressions for three mor-

tality rates that are less likely to be affected by the previous concern: Cerebrovascular

disease (CVD), transit accidents, and homicide.51 We find that none of these measures

predict future distribution of opioids (Columns 1 to 3) or change the predicted power of

our instrument (Columns 4 to 6).

C. Alternative Definitions: Opioid Mortality and Opioid Supply

Drug overdose deaths can be hard to categorize, specially when using data that spans

more than one version of the ICD codes. We construct an additional outcome measure for

opioid mortality and present the results using this measure in Figure A20 and Table A7.

This measure has the advantage that comparisons across years are less affected by changes

50The first stage coefficient is 1.542 in the five triplicate states defined in Alpert et al. (2022), and
0.917 in the other states. This difference is not statistically different and the p-value of such test is 0.203.

51A good candidate for this placebo check is mortality from external causes of deaths. External causes
are defined as intentional and unintentional injury and poisoning (including drug overdose). From this
category, we construct measures of mortality that do not include any of our outcome measures: accidental
poisoning and suicide.
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in the ICD classification, but this comes at the cost of including a broader set of drugs

as the cause of deaths.52 Exploiting this measure, we arrive at the same conclusions. As

an additional check, we use data only on Oxycodone as an alternative measure of opioid

supply. We find a positive relationship between cancer mortality rates and this measure

of opioid supply. In Table A8, columns (2) and (3) we estimate that an additional dose

of oxycodone per capita caused an increase in prescription opioid mortality and in all

opioid mortality.

D. Alternative Sample Restrictions and Specifications

In our main specification, we restrict our sample to areas with more than 25,000 residents,

which represents 99.8% of all opioid deaths and 99.3% of the total population. In Table

A9 we reproduce our instrumental variable analysis using alternative restrictions on the

size of commuting zones. We arrive at analogous conclusions to the main analysis; there

is a strong and positive relation between mid-nineties cancer mortality and supply of

prescription opioids which translates to (i) increases in opioid-related mortality, and (ii)

deteriorating economic conditions and health outcomes. SNAP benefit recipiency rates

at the commuting-zone level required imputations for some commuting zones with no

available data at the local level. Table A10 shows the result for the sample of commuting

zones that do not require state-level imputation. Our results are not sensitive to this

sample restriction. Finally, in Table A11 we expand the set of controls in our regression

to include either the unemployment rate or the employment rate and we find our results

are quantitatively indistinguishable.

E. Trade shocks & the 2001 Economic Recession

During our period of study, the US experienced significant economic changes that affected

communities differentially. In October, 2000, the US Congress passed a bill granting per-

manent normal trade relations (PNTR) with China. This trade liberalization impact

on communities is a function of the importance of the manufacturing industries for lo-

cal employment, especially in industries subjected to import competition from China.

Researchers have estimated the impact of this trade shock on a host of outcomes. Re-

gions more exposed to Chinese import competition experienced relatively larger declines

in employment and a greater uptake of social welfare programs (Autor and Dorn, 2013).

Additionally, areas more exposed to Chinese import competition exhibit relative increases

in fatal drug overdoses (Pierce and Schott, 2020).

In light of this evidence, we ask whether our results are confounded or mediated

by this trade policy. To answer this, we follow the trade literature to construct two

52Drug-induced deaths category includes deaths from poisoning and medical conditions caused by the
use of legal or illegal drugs, as well as deaths from poisoning due to medically prescribed and other drugs.
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alternative measures of exposure to PNTR and then estimate our first-stage and reduced-

form models controlling for these exposure measures (Pierce and Schott, 2020 and Autor

and Dorn, 2013). Table A12 columns two to four reproduce the first stage when we

control for exposure to Chinese import competition. We find the results are unaffected

by the inclusion of these variables. Figure A21 replicates our main results adding the

china shock measures to our event-study specification. Here as well we find our estimates

do not change with this exercise. This is the result of a very low correlation between our

instrument and the exposure to Chinese import competition.

The timing of some of our results overlaps with the 2001 economic recession. To

asses whether the recession is mediating some of our effects, we construct a measure of

exposure to the recession as the change in the unemployment rate from 2001 to 2000

at the commuting zone. Similar to the china shock, we find that our instrument and

this exposure measure have a very low correlation level (ρ=0.03), and our first stage

estimate are completely unaffected (column 1 in Table A12). More broadly, in the last

three columns of Table A12 we add controls for the unemployment rate in years 1994 to

1996, respectively, and find that our estimates do not change.

VII. Policy Implications and Conclusions

This paper studies the origins and effects of the opioid epidemic, one of the most tragic

episodes in recent history. To do so, we uncover novel geographical variation in the

initial promotion of OxyContin that targeted the cancer patients market. We document

that this initial targeting had long-term effects on the supply of prescription opioids,

overdose deaths involving opioids, a deterioration in adult wellbeing measured by the

demand for disability, and SNAP and has inter-generational effects through its impacts

on fertility and birth-outcomes. The breadth and timing of these effects show the far-

reaching ripples of the epidemic. Although, according to the CDC, opioid prescriptions

reached their peak in 2012, its effects persist. Mortality from prescription opioids rose

for another five years to reach its maximum in 2017, and deaths involving any opioids

were at an all-time high in 2021. Furthermore, the individual and community-level paths

from opioid misuse to addiction, to poverty and disability, to changes in family formation

and mortality are complex, and beyond the scope of this paper. In this paper, we sought

to provide a comprehensive picture of the effects of the opioid epidemic. However, data

access limitations have prevented us from speaking about important topics, such as the

effects on children’s well-being, foster care referrals, and healthcare use. We hope that

future research will shed light on these subjects.

In terms of policy recommendations, we want to highlight how complex and far-

reaching the effects of the opioid epidemic are and how this calls for a coordinated response

from multiple policy angles. Monitoring, limiting, and restricting access to prescription
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opioids, which has been the main policy response, is essential, but it falls short for

the needs of the affected population. Increasing access to rehabilitation treatments and

programs aimed at reincorporating parents and workers into their lives should be the

center of this response.

Finally, our results have direct policy implications regarding the desirability of pro-

motional efforts of addictive drugs by pharmaceutical companies that target physicians,

pharmacies, and patients. We document the devastating consequences of aggressive and

deceitful marketing of addictive drugs. Although marketing has expanded over the 25

years since the introduction of OxyContin, regulatory oversight remains relatively lim-

ited.53 Some regulatory initiatives constitute small steps in the right direction, however,

most of these initiatives are concerned with the rising costs of prescription drugs and not

with the risks of abuse and addiction. More can be done to restrict the pharmaceutical

promotion that carries this risk.

53Currently, prescription drug marketing practices in the US include direct-to-consumer and profes-
sional branded advertising, detailing visits, free drug samples, and direct physician and hospital payments
(e.g., speaker fees, food, travel accommodations).
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Honoré, Bo E, and Adriana Lleras-Muney. 2006. “Bounds in Competing Risks models and The
War on Cancer.” Econometrica, 74(6): 1675–1698.

Hoynes, Hilary, Doug Miller, and David Simon. 2015. “Income, the Earned Income Tax Credit,
and Infant Health.” American Economic Journal: Economic Policy, 7(1): 172–211.

30



Hungerman, Daniel, Tyler Giles, and Tamar Oostrom. 2022. “Opiates of the Masses? Deaths of
Despair and the Decline of American Religion.”

Jones, Mark R., Omar Viswanath, Jacquelin Peck, Alan D. Kaye, Jatinder S. Gill, and
Thomas T. Simopoulos. 2018. “A Brief History of the Opioid Epidemic and Strategies for Pain
Medicine.” Pain and Therapy, 7(1): 13–21.

Joranson, David E, Grant M Carrow, Karen M Ryan, Linda Schaefer, Aaron M Gilson,
Patricia Good, John Eadie, Susan Peine, and June L Dahl. 2002. “Pain management and
prescription monitoring.” Journal of pain and symptom management, 23(3): 231–238.

Kaplan, Jacob. 2020. “Jacob Kaplan’s Concatenated Files: Uniform Crime Reporting Program Data:
Offenses Known and Clearances by Arrest, 1960-2019.” Ann Arbor, MI: Inter-university Consortium
for Political and Social Research. https://doi.org/10.3886/E100707V16.

Keefe, Patrick Radden. 2017. “The Family That Built an Empire of Pain: The Sackler Dynasty’s
Ruthless Marketing of Painkillers Has Generated Billions of Dollars - And Millions of Addicts.” The
New Yorker.

Krueger, Alan B. 2017. “Where Have All the Workers Gone? An Inquiry into the Decline of the U.S.
Labor Force Participation Rate.” Brookings Papers on Economic Activity, 2017(2): 1.

Lee, David L., Justin McCrary, Marcelo J. Moreira, and Jack Porter. 2020. “Valid t-ratio
Inference for IV.” arXiv preprint arXiv:2010.05058.

Lynch, Sean, Laura Sherman, Susan M. Snyder, and Margaret Mattson. 2018. “Trends in
Infants Reported to Child Welfare with Neonatal Abstinence Syndrome (NAS).” Children and Youth
Services Review, 86: 135–141.

Maclean, Catherine, Justine Mallatt, Christopher J. Ruhm, and Kosali Ilayperuma Simon.
2020. “Review of Economic Studies on the Opioid Crisis.” NBER Working Paper No. 28067.

Macy, Beth. 2018. Dopesick: Dealers, Doctors, and The Drug Company that Addicted America. Little,
Brown.

Malbran, Pia. 2007. “What’s a Pill Mill?” CBS News, May, 31.

Mallatt, Justine. 2018. “The Effect of Prescription Drug Monitoring Programs on Opioid Prescriptions
and Heroin Crime Rates.” Available at SSRN 3050692.

Meara, Ellen, Jill R Horwitz, Wilson Powell, Lynn McClelland, Weiping Zhou, A James
O’malley, and Nancy E Morden. 2016. “State legal restrictions and prescription-opioid use among
disabled adults.” New England Journal of Medicine, 375(1): 44–53.

Meier, Barry. 2018. Pain Killer: An Empire of Deceit and the Origin of America’s Opioid Epidemic.
Random House.
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VIII. Maps and Figures

Map 1: Prescription Opioids Distribution at the Peak of the Epidemic (2010).

10.5+ doses
7.5−10.5 doses
5.5 − 7.5 doses
0 − 5.5 doses
Not in sample

Notes: This map shows the distribution of prescription opioids at the commuting zone level in 2010, the year when the distribution of prescription
opioids peaked as shown in Figure 1. Lighter shades indicate commuting zones with a lower prescription-opioid supply and darker shades indicate
commuting zones with a higher prescription-opioid supply. Each group corresponds to one quartile of the prescription opioids distribution; i.e., each
color accumulates 25% of the mass of this distribution. Commuting zones included in our sample represent 99.8% of all opioid deaths and 99.3% of the
total population. This figure is referenced in Section III.A.
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Map 2: Distribution of Cancer Mortality Rates Before the OxyContin’s Launch.

High cancer
Medium − high cancer
Low − medium cancer
Low cancer
Not in sample

Notes: This map shows the cancer mortality rate at the commuting-zone level for the year 1994 - 1996, before OxyContin was introduced to the market.
Lighter shades indicate commuting zones with lower cancer prevalence, while darker shades indicate commuting zones with higher cancer prevalence.
Each group corresponds to one quartile of the cancer mortality distribution; i.e., each color accumulates 25% of the mass of this distribution. Commuting
zones included in our sample represent 99.8% of all opioid deaths and 99.3% of the total population. This figure is referenced in Section III.B.
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Map 3: Prescriptions Opioid Mortality Rate 1999 - 2018

MR > 0.09
MR 0.056−0.090
MR 0.036 − 0.056
MR 0−0.036 
Not in sample

Notes: This map shows the distribution of prescription opioid mortality at the commuting zone level for the period 1999 - 2018. Lighter shades indicate
commuting zones with lower opioid mortality, while darker shades indicate commuting zones with higher opioid mortality. Each group corresponds to
one quartile of the opioid mortality distribution; i.e., each color accumulates 25% of the mass of this distribution. Commuting zones included in our
sample represent 99.8% of all opioid deaths and 99.3% of the total population. This figure is referenced in Section III.C.
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Figure 1: Prescription Opioids Distribution by Mid-nineties Cancer Prevalence

(a) Trends in High versus Low Cancer Mortality CZs
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Notes: Panel (a) shows the evolution oxycodone, hydrocodone, and morphine in commuting zones in the bottom (dashed lines) and top (solid lines)
quartiles of cancer mortality before the launch of OxyContin. Oxycodone is OxyContin’s active ingredient. Between 1997 and 2010, areas in the highest
quartile of cancer incidence saw an increase in oxycodone grams per capita of 2,900%, while areas in the lowest quartile experienced a growth that was
one-third that. All prescription opioids and oxycodone are measured in morphine-equivalent doses. Panel (b) shows estimates of the coefficients of the
dynamic first stage. We regress our measure of prescription opioids distribution on a set of year-dummy variables interacted with the instrument—cancer
mortality in 1994-1996—and present estimates of these coefficients. This figure is referenced in Section IV.A. and in Section VI.
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Figure 2: Opioids Marketing and Mid-nineties Cancer Mortality
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Notes: Panels A and B use data from the CMS Open Payments. High cancer corresponds to the top quartile of cancer incidence in 1994-1996, and
low cancer to the bottom quartile. Panels C and D use digitized data from “Exhibit 1 - Sales Visits By Purdue In Massachusetts. Commonwealth of
Massachusetts v. Purdue Pharma c.a. No. 1884-cv-01808”(Figure A6) to construct county-level averages. This figure is referenced in Section IV.A.
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Figure 3: Effects of Mid-nineties Cancer-market Targeting on Prescription Opioid Mortality

(a) High versus Low Cancer Mortality CZs
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(b) Reduced Form - Event Study Approach
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Notes: This figure shows the effects of the increase in prescription opioid supply in prescription opioid mortality. Panel (a) shows the raw data, early in
the 2000s, a wedge starts to appear between high- and low-cancer-incidence groups, and by 2018 prescription opioid mortality in high-cancer areas is 75%
higher. Panel (b) shows the dynamic reduced-form estimation. We regress prescription opioid mortality on a set of year-dummy variables interacted with
our instrument—cancer mortality in 1994-1996. These coefficients corresponds to the estimate of ϕt in Equation 3. We use this specification to test for
the presence of pre-trends in the relation between opioid mortality and mid-nineties cancer mortality; we do not reject the null hypothesis that the esti-
mated coefficients before 1996 are jointly equal to zero, the p value of this test equals 0.2926. This figure is referenced in Section IV.B., and in Section V.A.
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Figure 4: Effects of Mid-nineties Cancer-market Targeting on All-Opioid Opioid Mortality

(a) High versus Low Cancer Mortality CZs
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(b) Reduced Form - Event Study Approach
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Notes: This figure shows the effects of the increase in prescription opioid supply in all-opioid mortality. Panel (a) shows the raw data, early in the
2000s, a wedge starts to appear between high- and low-cancer-incidence groups. Panel (b) shows the dynamic reduced-form estimation. We regress
all-opioid mortality on a set of year-dummy variables interacted with our instrument—cancer mortality in 1994-1996. These coefficients corresponds to
the estimate of ϕt in Equation 3. We use this specification to test for the presence of pre-trends in the relation between opioid mortality and mid-nineties
cancer mortality; we do not reject the null hypothesis that the estimated coefficients before 1996 are jointly equal to zero, the p value of this test equals
0.1574. This figure is referenced in Section IV.B., in Section V.A., and in Section V.B.
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Figure 5: Effects of Mid-nineties Cancer-market Targeting on the Sh. of SNAP Recipients
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Notes: This figure shows the effects of the increase in prescription opioid supply on SNAP
recipients per capita. We present the results of a dynamic reduced-form estimation were we regress
SNAP claims per capita on a set of year-dummy variables interacted with our instrument—cancer
mortality in 1994-1996. These coefficients corresponds to the estimate of ϕt in Equation 3. We use
this specification to test for the presence of pre-trends in the relation between SNAP claims and
mid-nineties cancer mortality; we do not reject the null hypothesis that the estimated coefficients
before 1996 are jointly equal to zero, the p value of this test equals 0.6539. This figure is referenced
in Section IV.B., and in Section V.B.
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Figure 6: Effects of Mid-nineties Cancer-market Targeting on Fertility Rates and Birth Outcomes

(a) Non-marital Fertility Rate
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(b) Infant Mortality Rate
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Notes: This figure shows the effects of the increase in prescription opioid supply in the fertility rate of unmarried women (panel a) and in infant mortality rate
(panel b). We present the results of a dynamic reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with our
instrument—cancer mortality in 1994-1996. These coefficients corresponds to the estimate of ϕt in Equation 3. We use this specification to test for the presence
of pre-trends in the relation between birth and fertility outcomes and mid-nineties cancer mortality; we do not reject the null hypothesis that the estimated co-
efficients before 1996 are jointly equal to zero, the p value of these tests are presented in the figures. This figure is referenced in Section IV.B., and in Section V.B.
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Figure 7: Effects of Mid-nineties Cancer-market Targeting on Opioid Mortality by Age

(a) Prescription Opioids
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(b) Any Opioids
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Notes: This figure shows the effects of the increase in prescription opioid supply in opioid related mortality by age group. We present the results of a dynamic
reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with our instrument—cancer mortality in 1994-1996. These
coefficients corresponds to the estimate of ϕt in Equation 3. This figure is referenced in Section IV.B., and in Section V.A.
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Figure 8: Trends on Overall Health and Despair Mortality

(a) Non-cancer Mortality. Adults +75 Years Old.
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(b) Deaths of Despair (excluding opioids)
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(c) Suicide Mortality Rate
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(d) Alcohol-related Deaths
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Notes: This figure shows the dynamic reduced-form relationship between mortality of 75-years-old and older adults (panel a) and despair mortality measures
(panels b to d) and our instrument. We regress these outcomes on a set of year-dummy variables interacted with cancer mortality in 1994-1996. We test for
the presence a relationship between our outcomes and mid-nineties cancer mortality before the introduction of OxyContin and do not reject the null hypothe-
sis that the estimated coefficients are jointly equal to zero. The p value of these tests are presented in the figures. This figure is referenced in Sections IV.B. and V.B.
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Figure 9: Robustness Check: Dynamic Reduced Form for Out-of-sample Opioid-Mortality

(a) Drug Induced Mortality
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(b) All Opioid Mortality
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Notes: This figure shows the dynamic reduced-form relationship between outcomes of interest and our instrument in a out-of-sample period. That is, we replicate
our dynamic reduced-form analysis in the pre-OxyContin period. We regress each outcome on a set of year-dummy variables interacted with the out-of-sample
instrument—cancer mortality in 1989 - 1990. We use this specification to test for the presence a relationship between our outcomes and mid-nineties cancer
mortality before the introduction of OxyContin. This figure is referenced in Section IV.B.
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IX. Tables

Table 1: Summary Statistics for 1999-2018

Mean Median SD Min Max Obs.
(1) (2) (3) (4) (5) (6)

Opioid Prescriptions: Doses per capita
All Prescription Opioids 6.42 5.48 4.32 0.00 57.65 11,800
Oxycodone 3.15 2.52 2.60 0.00 51.31 11,800
Hydrocodone 1.93 1.55 1.50 0.00 16.66 11,800
Morphine 0.94 0.77 0.69 0.00 10.67 11,800

Cancer Mortality per 1,000
Cancer mortality rate 1994-1996 2.53 2.53 0.58 0.12 6.24 590
Cancer mortality rate 2.48 2.49 0.55 0.59 4.75 11,800

Opioid-related Mortality per 1,000
Prescription opioids 0.04 0.03 0.05 0.00 1.06 11,800
Any opioids 0.07 0.05 0.07 0.00 1.22 11,800

Other Mortality Measures per 1,000
All-cause mortality (+20 years old) 9.87 9.93 2.06 2.79 20.92 11,800
Deaths of despair 0.27 0.25 0.10 0.00 1.17 11,800
Alcoholic liver diseases and cirrhosis 0.12 0.11 0.06 0.00 0.63 11,800
Suicide 0.15 0.14 0.06 0.00 0.48 11,800

Demand for Social Services
Share SSI 0.04 0.03 0.02 0.00 0.30 11,800
Share SSDI 0.05 0.04 0.02 0.01 0.16 11,800
Share SNAP 0.12 0.11 0.07 0.00 1.20 11,800

Infant and Fertility Outcomes
Infant MR (per 1,000 births) 6.86 6.54 2.87 0.00 30.61 11,800
Birth weight 3,274.25 3,276.53 79.47 2,930.28 3,569.76 11,800
Share low birth weight 0.08 0.08 0.02 0.02 0.20 11,800
Share preterm 0.12 0.12 0.03 0.05 0.62 11,800
APGAR score - all infants 8.82 8.84 0.19 5.00 10.00 11,800
APGAR score - dead infants 5.62 6.00 2.28 0.00 10.00 11,460
Median gestation 38.95 39.00 0.24 35.00 40.00 11,800
Fertility rate 0.08 0.08 0.01 0.04 0.19 11,800
Fertility rate 25-29 0.13 0.12 0.02 0.05 0.27 11,800
Fertility rate - unmarried women 0.03 0.03 0.01 0.00 0.09 11,800

Notes: This table presents summary statistics for our main outcomes, measures of the prescription opioid supply, and
cancer mortality incidence for the period 1999 - 2018. We leverage data from multiple sources. Prescription drugs
distribution data come from the DEA. Data on opioid, cancer, birth, and fertility outcomes come from the NVSS. We
use data from the Food and Nutrition Service of the Department of Agriculture and the SSA to construct demand for
the Supplemental Nutrition Assistance Program (SNAP), Supplemental Security Income (SSI), and Social Security
Disability Insurance (SSDI). This table is referenced in Section III.
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Table 2: First-stage Results

Dependent variable: Prescription opioids per capita
(1) (2) (3) (4) (5)

Cancer MR 94-96 0.960*** 1.091*** 1.061*** 1.132*** 1.078***
se [0.210] [0.222] [0.231] [0.258] [0.264]
t-stat 4.571 4.914 4.593 4.388 4.083
Effective F-stat 20.894 24.147 21.096 19.254 16.630

Effect size 56.92 64.69 62.91 67.12 63.92

Controls No No No Yes Yes
FE No State Year State × Year State Year State × Year
Observations 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590
Adj. R2 0.019 0.524 0.559 0.533 0.564

Notes: This table presents estimates of the first-stage equation. The dependent variable is the long change in pre-
scription opioids per capita and it is constructed using a baseline the year 1997—the first year ARCOS data are
available. Control variables in long changes are contemporaneous cancer mortality rate, share of population under
1 year old, share of population between 18 and 65, share of population over 66 years, share of Black, White, and
Hispanic population, and share of female population. Effect size is computed as the explained changes in doses of
prescription opioids per capita from an increase in cancer mortality that would change a commuting zone in the 5th
percentile of the cancer distribution to the 95th percentile, relative to change in our period. t − stat corresponds to
the t− statistic for the null hypothesis that the coefficient on cancer mortality rate is equal to zero. Effective F-stat
corresponds to the the effective first-stage F statistic proposed by Montiel Olea and Pflueger (2013). Standard errors
are clustered at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section IV.A.
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Table 3: First Stage Robustness Check

Panel A. Alternative choices of instruments
Dependent variable: Prescription Opioids pc

(1) (2) (3) (4) (5)

Cancer MR 0.868*** 1.171*** 0.930*** 0.754*** 1.417***
[0.229] [0.272] [0.260] [0.223] [0.284]

Mean cancer MR 2.5168 2.5403 2.5477 2.5221 2.2582
Instrument version: Age adjusted 1994 1995 1996 Weighted

MR 94-96
Observations 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590
Adj. R2 0.553 0.565 0.557 0.551 0.553

Panel B. Alternative choices of instruments
Dependent variable: Prescription Opioids pc

(1) (2) (3) (4) (5)

Cancer MR 1.186*** 0.402*** 0.210** 0.127** 11.72***
[0.315] [0.149] [0.0988] [0.0563] [4.317]

Mean cancer MR 0.6836 9.8072 13.1382 17.5892 0.1342
Instrument version: Excluding 55+ 65+ 75+ Sh. Pop 66+

lung cancer
Observations 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590
Adj. R2 0.55 0.55 0.56 0.56 0.57

Panel C. Alternative measures of prescription opioids supply
Dependent variable: Oxycodone pc Non-oxycodone prescription opioids

(1) (2)

Cancer MR 0.605*** 0.473***
[0.186] [0.107]

Mean cancer MR 2.5312 2.5312
Instrument version: Baseline Baseline
Observations 11,800 11,800
Clusters 590 590
Adj. R2 0.526 0.594

Notes: All regressions include state times year fixed effects and a set of control variables: contemporaneous
cancer mortality rate, share of population under 1 year old, share of population between 18 and 65, share of
population over 66 years, share of Black, White, and Hispanic population, and share of female population.
Standard errors are clustered at the commuting-zone level. * p<0.10, ** p<0.05, ***p<0.01. This table is
referenced in Section VI.A.
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Table 4: Placebo Check - Alternative Measures of Mortality

Dependent variable: Prescription opioids per capita
(1) (2) (3) (4) (5) (6)

CVD MR 94 96 0.372 -2.023**
[0.611] [0.822]

Accidental MR 94 96 1.067 -1.639
[1.411] [1.406]

Homicides MR 94 96 0.214 -0.474
[3.379] [3.173]

Cancer MR 94 96 1.381*** 1.015*** 0.923***
[0.347] [0.245] [0.233]

Model FS FS FS FS FS FS
Observations 11,800 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590 590
Adjusted R2 0.55 0.549 0.549 0.565 0.561 0.562

Notes: CVD stands for cerebrovascular diseases. Columns 1-3 report first-stage regression with alternative
measures of exposure to the opioid epidemic. Columns 4-6 add our baseline instrument. All regressions include
state times year fixed effects and a set of control variables: labor force participation, contemporaneous cancer
mortality rate, share of population under 1 year old, share of population between 18 and 65, share of population
over 66 years old, share of Black, White, and Hispanic population, and share of female population. Standard
errors are clustered at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section VI.B.
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A Additional Figures

Figure A1: OxyContin Marketing Budget and Total Prescription Sales
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Notes: Author’s constructions based on OxyContin Budget Plans 1998-2002 and United States General
Accounting Office (GAO). Prescription Drugs: OxyContin Abuse and Diversion and Efforts to Address the
Problem: Report to Congressional Requesters. 2003. This figure is referenced in Section II.
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Figure A2: Purdue Pharma Budget Plan 1997: Target Audiences

Notes: This figure is an extract of Purdue Pharma marketing plan. It shows that Purdue marketing targeted
top opioid prescribers. Purdue Pharma Budget Plan 1997, p.25. This figure is referenced in Section II.
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Figure A3: Mid-nineties Cancer Mortality Rate and 1994 MS Contin prescriptions
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Notes: This figure shows the relationship between MS Contin prescription rates prior to the launch of
OxyContin and mid-nineties cancer mortality. Source: CMS- Medicaid State Drug Utilization. This figure is
referenced in Section II.
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Figure A4: Evolution of Prescription Opioid Distribution
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Notes: This figure shows the evolution of shipments of all prescription opioids and the three main components:
oxycodone, hydrocodone and morphine. Oxycodone is the active ingredient of OxyContin. Shipments of
prescription opioids are expressed in morphine-equivalent doses. Data on opioids distribution come from the
ARCOS. The mortality rate (MR) from prescription opioids is constructed using data from the National Vital
Statistic System and plotted in the right-hand-side axis. Details on the construction of this measure are found
in C. This figure is referenced in Section III.A.
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Figure A5: Evolution of Cancer Mortality and Prescription Opioid Supply
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Notes: This figure shows the evolution of prescription opioids (light blue lines in the left-hand axis) and cancer
mortality rates (dark-blue lines in the right-hand axis) over time for commuting zones in the top and bottom
quartiles of the cancer mortality distribution. Areas in the top quartile of the cancer distribution experienced
an influx of opioids that was up to 3 times larger than the one experience by areas in the bottom quartile.
Changes in cancer mortality does not explain this discrepancy; trends in carcer mortality rates in these groups
of commuting zones suggest that mortality was quite stable in the period. Prescription opioids is measured in
morphine-equivalent mg. This figure is referenced in Section IV.A.
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Figure A6: Extract Exhibit 1 - Sales Visits By Purdue In Massachusetts

Notes: Extract of Exhibit 1 - Sales Visits By Purdue In Massachusetts. COMMONWEALTH OF MASSACHUSETTS
v.PURDUE PHARMA C.A. No. 1884-cv-01808. This figure is referenced in Section IV.A.
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Figure A7: Effects of Mid-nineties Cancer-market Targeting on Birth Outcomes
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(b) APGAR Score
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Notes: This figure shows the effects of the increase in prescription opioids supply in the share of infants with low birth weight (panel a) and in APGAR score (panel
b). The APGAR score is a measure of the physical condition of a newborn infant. It varies from 0 to 10, a score of 10 represents the best possible condition. We
present the results of a dynamic reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with our instrument—cancer
mortality in 1994-1996 (ϕt in Equation 3). We use this specification to test for the presence of pre-trends in the relation between infant outcomes and mid-nineties
cancer mortality; we do not reject the null hypothesis that the estimated coefficients before 1996 are jointly equal to zero, the p values are presented in the figures. This
figure is referenced in Section IV.B., in Section V.A., and in Section V.B.
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Figure A8: Effects of Mid-nineties Cancer-market Targeting on Share of Smokers
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Notes: This figure shows the effects of the increase in prescription opioids supply in the share of smokers. We present the
results of a dynamic reduced-form estimation were we regress the outcome on a set of year-dummy variables interacted
with our instrument. We construct the share of smokers using data from the Behavioral Risk Factor Surveillance System
(BRFSS). We perform the analysis up to 2010 since starting in 2011, BRFSS changed its data collection, structure, and
weighting methodology. In 2011 there is an increase in the proportion of people being surveyed on cell phones and it also
coincides with a rise in the percentage of respondents with unknown smoking status as documented by DeCicca et al.
(2022). This figure is referenced in Section IV.B. and Section V.B.
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Figure A9: Opioid Mortality Rate by Octiles of the 1994-1996 Cancer Prevalence
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Notes: This figure shows the evolution of prescription opioid (panel a) and all opioids (panel b) mortality in eight groups of commuting zones. Each group is composed
of those commuting zones in the n-th octile of the cancer mortality rate distribution before the launch of OxyContin. Darker colors indicate groups with higher cancer
prevalence. Lighter colors indicate groups with lower cancer prevalence. This figure is referenced in Section V.A.
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Figure A10: Dynamic Reduced Form Estimates - Out-of-sample Analysis
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(c) Infant Mortality Rate
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Notes: This figure shows the dynamic reduced-form relationship between outcomes of interest and our
instrument in an out-of-sample period. That is, we replicate our dynamic reduced-form analysis in the
pre-OxyContin period. We regress each outcome on a set of year-dummy variables interacted with the
out-of-sample instrument—cancer mortality in 1989 - 1990. We use this specification to test for the presence
a relationship between our outcomes and mid-nineties cancer mortality before the introduction of OxyContin.
We do not reject the null hypothesis that the estimated coefficients are jointly equal to zero, the p value of
these tests are presented in the figures. This figure is referenced in Section IV.B.
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Figure A11: Dynamic Reduced Form Estimates - Out-of-sample Analysis: Labor Market Outcomes
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Notes: This figure shows the dynamic reduced-form relationship between the share of employment in the manufacturing and mining industries and our
instrument in an out-of-sample period. The first year of available data is 1990. We use this specification to test for the presence a relationship between our
outcomes and mid-nineties cancer mortality before the introduction of OxyContin. We do not reject the null hypothesis that the estimated coefficients are
jointly equal to zero, the p value of these tests are presented in the figures. This figure is referenced in Section IV.B.
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Figure A12: Effects of Mid-nineties Cancer-market Targeting on Opioid Mortality by Race and Gender
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Notes: This figure shows the effects of the increase in prescription opioid supply in opioid related mortality by race group (panel a) and by gender (panel b). We present
the results of a dynamic reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with our instrument—cancer mortality
in 1994-1996. These coefficients corresponds to the estimate of ϕt in Equation 3. This figure is referenced in Section V.A.
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Figure A13: Effects of Mid-nineties Cancer-market Targeting on Non-cancer Mortality
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Notes: This figure shows the effects of the increase in prescription opioid supply in non-cancer mortality for adults aged 20
years and older. We present the results of a dynamic reduced-form estimation were we regress these outcomes on a set of
year-dummy variables interacted with our instrument—cancer mortality in 1994-1996. These coefficients corresponds to
the estimate of ϕt in Equation 3. This figure is referenced in Section V.B.
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Figure A14: Effects of Mid-nineties Cancer-market Targeting on Disability Claims
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Notes: This figure shows the effects of the increase in prescription opioid supply in the share of population enrolled in SSDI (panel a) and SSI (panel b) programs. We
present the results of a dynamic reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with our instrument—cancer
mortality in 1994-1996. These coefficients corresponds to the estimate of ϕt in Equation 3. This figure is referenced in Section V.B.
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Figure A15: Effects of Mid-nineties Cancer-market Targeting on Marital and Non-marital Fertility
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Notes: This figure shows the effects of the increase in prescription opioid supply in marital and non-marital
fertility. We present the results of a dynamic reduced-form estimation were we regress these outcomes on a
set of year-dummy variables interacted with our instrument—cancer mortality in 1994-1996. These coefficients
corresponds to the estimate of ϕt in Equation 3. This figure is referenced in Section V.B.
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Figure A16: Flexible Controls for the Share of Hispanic and +65 Years Old Population
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Notes: This figure shows estimates of the coefficients of the dynamic first stage and the effect of the increase in prescription opioid supply using our baseline
specification and adding controls for the share of Hispanic population and the share of population over 65 years old measured in 1994-1996 and interacted
with a set of year-dummy variables. That is, adding flexible controls to capture the evolution of variables that predict cancer mortality in 1996. This figure is
referenced in Section VI.A.
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Figure A17: Alternative Instruments: Dynamic First Stage and Effects of Mid-nineties Cancer-market Targeting
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(c) Prescription Opioid Mortality - Age Adjusted
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(d) Prescription Opioid Mortality - Weighted
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Notes: This figure shows the effects of the increase in prescription opioid supply in prescription opioid mortality, it shows the baseline specification and
reproduces this analysis using population weights in the estimation of the event study coefficients. This figure is referenced in Section VI.A.
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Figure A18: Alternative Instrument: Cancer Mortality 1994.
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Notes: This figure shows the dynamic first stage (panel a) and reduced-form (panels b to f) relations between outcomes of interest and an alternative
instrument: cancer mortality rate in 1994. This figure provides a robustness check for our preferred specification which uses cancer mortality in 1994-1996
as an instrument. We do not find evidence for the presence of pre-trends in the relation between opioid mortality—and other outcomes of interest—and
mid-nineties cancer mortality in this alternative specification. We test if the estimated coefficients before 1996 are jointly equal to zero and do not reject the
null hypotheses, the p values are reported in each panel. This figure is referenced in Section VI.A.
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Figure A19: Robustness check: Leave-ones-out estimates

(a) First-stage coefficient estimates
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(b) Prescription opioids: Reduced-form coefficient estimates
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Notes: Panel (a) of this figure reports the estimated coefficient ϕ of the first stage equation (Equation 1) and the
corresponding 95% confidence interval. Panel (b) of this figure reports the estimated reduced-form coefficient. The
first coefficient and confidence interval of each graph replicate the main result result—see column 5 of Table 2 and
column 2 of Table D1. Each of the subsequent coefficients are computed by excluding all commuting zones in the state
or group of states indicated on the horizontal axis (thus, the x-axis label). Triplicate states are: California, Idaho,
Illinois, New York, and Texas. Not triplicate group excludes all these 5 states. This figure is referenced in Section VI.A.
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Figure A20: Alternative Measure of Opioid-related Deaths
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Notes: This figure shows the dynamic reduced-form estimation. We regress drug induced opioid mortality on a
set of year-dummy variables interacted with our instrument—cancer mortality in 1994-1996. These coefficients
corresponds to the estimate of ϕt in Equation 3This figure is referenced in Section VI.C.
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Figure A21: Robustness check: Control for exposure to the “China shock”
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(b) Change in Chinese import exposure (ADH, 2013)
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Notes: This figure presents the baseline dynamic reduced-form estimates and the dynamic reduced-form estimates
when we control for exposure to permanent normal trade relations (PNTR) to China—termed the China shock in
the trade literature. In October, 2000, the US Congress passed a bill granting permanent normal trade relations to
China, a trade liberalization that granted China imports access to normal trade relations (NTR) tariff rates. This
trade liberalization differentially exposed US regions to increased import competition from China via their industry
structure. We test whether results on opioid mortality are driven by this differential exposure. First, we follow
Pierce and Schott (2020) and construct a measure of exposure to trade liberalization as the difference between the
non-NTR rates to which tariffs could have risen prior to PNTR and the NTR rates that were locked in by the change
in policy. A higher NTR gap indicates a larger trade liberalization after the passage of PNTR. Panel (a) shows
estimates of the reduced-form when we control for the commuting-zone-level NTR gap. Second, we measure exposure
to trade liberalization following David et al. (2013): in this case, we control for the change in Chinese import expo-
sure per worker in a commuting zone. These results are presented in Panel (b). This figure is referenced in Section VI.E.
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B Additional Tables

Table A1: Additional Summary Statistics: Opioid Prescriptions, doses per capita

Mean Median SD Min Max Observations

1997

All opioids 1.49 1.40 0.67 0.04 7.64 590

Oxycodone 0.35 0.32 0.21 0.01 1.76 590

Hydrocodone 0.55 0.49 0.34 0.01 2.73 590

Morphine 0.31 0.29 0.17 0.01 1.89 590

2007

All opioids 7.03 6.24 4.01 0.22 36.24 590

Oxycodone 3.26 2.76 2.33 0.08 26.86 590

Hydrocodone 2.33 1.87 1.72 0.04 14.30 590

Morphine 1.04 0.89 0.68 0.04 8.58 590

2017

All opioids 6.97 6.30 3.50 0.19 27.47 590

Oxycodone 3.75 3.42 2.25 0.11 15.34 590

Hydrocodone 1.86 1.63 1.17 0.04 10.57 590

Morphine 0.92 0.82 0.50 0.03 5.27 590

Notes: This table presents summary statistics for our measure of the prescription opioids supply and the distribution
of oxycodone, hydrocodone, and morphine for the years 1997, 2007, and 2017. Data come from the ARCOS and are
expressed in morphine-equivalent mg. This table is referenced in Section III.A.
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Table A2: Summary statistics: Pre-period and sample period.

1989 - 1995 1999 - 2018

Mean SD Mean SD

(1) (2) (3) (4)

Cancer Mortality per 1,000

Cancer mortality rate 1994-1996 2.53 0.58 2.53 0.58

Cancer mortality rate 2.53 0.59 2.48 0.55

Opioid-related Mortality per 1,000

Prescription opioids 0.01 0.01 0.04 0.05

Any opioids 0.01 0.02 0.07 0.07

Other Mortality Measures per 1,000

All-cause mortality (+20 years old) 9.81 2.07 9.87 2.06

Deaths of despair 0.24 0.08 0.27 0.10

Deaths of despair - alcohol only 0.09 0.04 0.12 0.06

Deaths of despair - suicide only 0.13 0.05 0.15 0.06

Demand for Social Services

Share SNAP 0.10 0.06 0.12 0.07

Infant and Fertility Outcomes

Infant MR (per 1,000 births) 8.87 3.22 6.86 2.87

Birth weight 3416.31 80.77 3274.25 79.47

Share low birth weight 0.07 0.02 0.08 0.02

Share preterm 0.11 0.02 0.12 0.03

APGAR score - all infants 8.24 2.65 8.82 0.19

APGAR score - dead infants 6.14 2.15 5.62 2.28

Median gestation 39.12 0.32 38.95 0.24

Fertility rate 0.08 0.03 0.08 0.01

Fertility rate 25-29 0.12 0.04 0.13 0.02

Fertility rate - unmarried women 0.02 0.01 0.03 0.01

Notes: This table presents summary statistics for our main outcomes and cancer mortality incidence for the period
before the launch of OxyContin (1989-1995) and the period of analysis (1999 - 2018). We leverage data from multiple
sources. The last two columns reproduce columns (2) and (4) of Table 1. Data on opioid, cancer, birth, and fertility
outcomes come from the NVSS. We use data from the Food and Nutrition Service of the Department of Agriculture
and the SSA to construct demand for the Supplemental Nutrition Assistance Program (SNAP), Supplemental
Security Income (SSI), and Social Security Disability Insurance (SSDI). This table is referenced in Section III.
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Table A3: Determinants of the Opioid Distribution in 2000

Dependent variable: Prescription opioids per capita

(1) (2)

Demographics (in shares) Crime (in rates)

White 3.526*** Overall -0.0000622

[0.961] [0.0000752]

Hispanic -3.323*** Violent 0.00160***

[0.807] [0.000614]

Female 6.709 Economic characteristics

[9.973] Ln income 2.517***

Aged 18-65 21.67*** [0.922]

[4.348] Share below poverty line 0.0521

Aged +66 6.211 [0.0625]

[7.665] Share employed in manufacturing -0.0374***

Infants -100.8* [0.0105]

[56.42] Share with some college education 0.00938

Labor market [0.0135]

Employment rate -16.18*** Health outcomes

[6.031] Cancer mortality rate -0.164

Labor Force Participation -1.805 [0.330]

[2.493] Infant mortality rate -0.0117

Safety net and social insurance [0.0199]

SSDI 48.45*** Birth weight 0.000336

[9.821] [0.00127]

SSI 5.740 Share preterm births 2.330

[8.944] [4.796]

SNAP -1.914 Gestation -0.200

[3.848] [0.396]

Fertility rate 52.51***

[14.07]

Mean dependent variable 2.8567

Year 2000

Observations 590

Notes: This table presents estimated coefficients from a cross-section regression of oxycodone distribution per capita
on demographic characteristics, labor market outcomes, measures of social assistance demand, crime outcomes,
economic characteristics, and health outcomes at the commuting-zone level. Data on economic characteristics come
from county-level tabulations of Decennial Census Data. The variable share with some college measures the share of
the population older than 25 years old who have some education at the college level or higher. Standard errors are
robust to heteroskedasticity. *p<0.10, **p<0.05, *** p<0.01. This table is referenced in Section IV.
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Table A4: Determinants of Cancer Mortality Rate 94-96

Dependent variable: Cancer MR 94-96
(1) (2)

Sh. of population over 66 11.13*** Adult MR excluding cancer 0.0439**
[1.895] [0.0179]

Sh. of population 18-65 -0.664 Income per capita -0.00000857
[1.361] 0.118

Sh. of population under 1 2.156 Share with some college 0.518*
[9.066] [0.274]

Share Black 0.127 Share with high school or less 0.124
[0.241] [0.191]

Share Hispanic -1.215*** Share working in manufacturing -0.199
[0.303] [0.133]

Share female -1.48 Labor Force Participation 0.528
[1.565] [0.399]

Prescription Opioids MR 1.093 Employment rate -1.984*
[1.078] [1.118]

Infant Mortality rate -0.00288 Share SNAP 0.484
[0.00337] [0.383]

Fertility rate 0.311 Share SSDI 1.856
[0.426] [1.929]

Observations 590 R2 0.847

Notes: This table presents estimates of the determinants of the 1994-1996 cancer mortality rate at the commuting
zone level. This regression includes state fixed effects. Robust to heteroskedasticity standard errors are in brackets.
MR stands for Mortality rate. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section IV.B.
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Table A5: Cancer Mortality Rate: Out-of-sample Analysis

Cancer MR 89-90 Cancer MR 89-90

(1) (2)

Dependent variables: Dependent variables:

Income per capita 19.42 Prescription Opioids MR -0.000795

[62.24] [0.000580]

Share with some college 0.0063 Any Opioids MR -0.00101

[0.00386] [0.000671]

Share with high school or less 0.00257 Share SNAP -0.000529

[0.00420] [0.000840]

Share working in manufacturing 0.0063 Share SSDI -0.000523

[0.00386] [0.000890]

Labor Force Participation -0.00153* Share SSI 0.000151

[0.000821] [0.000345]

Employment rate -0.000781 Infant Mortality Rate -0.0989

[0.000489] [0.154]

Total crime rate 44.5 Fertility rate -0.641

[28.63] [0.490]

Notes: Each coefficient corresponds to a separate regression where the dependent variable is measured as the
change with respect to 1989-1990. For prescription opioids, any opioids, labor market variables, SNAP, and infant
mortality rate, we run a panel regression; for the other variables, where yearly data are not available, we run
one cross-sectional regression. MR stands for mortality rate. All regressions include as control variables in long
changes: cancer mortality rate, share of population under 1 year, share of population between 18 and 65, share of
population over 66 years old, share of Black, White, and Hispanic population, and share of female population. In
panel-level regressions, standard errors are clustered at the commuting-zone level; in cross-sectional regressions, stan-
dard errors are robust to heteroskedasticity. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section IV.B.
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Table A6: First Stage Results with Population Size Controls

Dependent variable: Prescription opioids per capita

(1) (2) (3) (4) (5)

Cancer MR 94-96 1.078*** 1.635*** 1.072*** 1.046*** 1.608***

se [0.264] [0.483] [0.276] [0.266] [0.490]

t-stat 4.08 3.39 3.88 3.94 3.28

Effective F-stat 16.63 11.49 15.05 15.52 10.76

Share pop +65 yo No Yes No No Yes

Total pop +65 yo No No Yes No No

Total population No No No Yes Yes

Observations 11,800 11,800 11,800 11,800 11,800

Clusters 590 590 590 590 590

Adj. R2 0.56 0.57 0.56 0.57 0.57

Notes: All specifications include as control variables: contemporaneous cancer mortality rate, share of
population under 1 year old, share of population between 18 and 65, share of population over 66 years,
share of Black, White, and Hispanic population, and share of female population. Standard errors are
clustered at the commuting-zone level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in
Section VI.A.



Table A7: Direct Effects. Alternative Measure of Opioid Mortality

Dependent var: Drug Induced Mortality Rate

(1) (2) (3)

Prescription opioids pc 0.00505*** 0.0112***
[0.00152] [0.00369]

tF 0.05 se 0.00518
t-stat using tF 0.05 se 2.16329
AR p-value 0.00010

Cancer MR 94-96 0.0121***
[0.00314]

Effect size (%) 20.96 46.94

Model OLS RF IV
Observations 11,800 11,800 11,800
Clusters 590 590 590
Adjusted R2 0.4304 0.3908
Effective F-stat 16.63
Cragg-Donald Wald F-stat 358.58

Notes: Control variables are contemporaneous cancer mortality rate, share of population under
1 year old, share of population between 18 and 65, share of population over 66 years old, share
of Black, White, and Hispanic population, and share of female population. Effect size indicates
the percent change in the dependent variable relative to its mean when doses of prescription
opioids per capita increase from the 25th to the 75th percentile. Standard errors in square
brackets are clustered at the CZ level. Using these standard errors, we report * p<0.10, **
p<0.05, *** p<0.01. tF 0.05 se, t-stat using tF0.05 se, and the AR p-value correspond to
weak-instrument-robust inference procedures. This table is referenced in Section VI.C.



Table A8: Alternative Measure of Opioid Supply.

Dependent var: Oxycodone pc Presc. opioids MR All opioids MR
(1) (2) (3)

Cancer MR 94-96 0.605***
[0.186]

Oxycodone pc 0.0121*** 0.0115***
[0.00412] [0.00436]

tF 0.05 se (0.00578) (0.00612)
t-stat using tF 0.05 se 2.0932 1.8799

Effect size (%) 38.00 91.50 40.37

Model FS IV IV
Observations 11,800 11,800 11,800
Clusters 590 590 590
Adjusted R2 0.526

Notes: All regressions include state times year fixed effects. Control variables are contemporaneous
cancer mortality rate, share of population under 1 year old, share of population between 18 and 65,
share of population over 66 years old, share of Black, White, and Hispanic population, and share of
female population. This table reproduces the main analysis using Oxycodone shipments as the measure
of opioid supply. Effect size in column (1) is computed as the predicted changes in doses of oxycodone
and prescription opioids per capita from an increase in cancer mortality that would change a commuting
zone in the 5th percentile of the cancer distribution to the 95th percentile. Effect sizes in columns (2) and
(3) indicate the percent change in the dependent variable relative to its mean when doses of prescription
opioids per capita increase from the 25th to the 75th percentile. Standard errors in square brackets
are clustered at the CZ level; using these standard errors, we report * p<0.10, ** p<0.05, *** p<0.01.
tF 0.05 se, and t-stat using tF0.05 se correspond to weak-instrument-robust inference procedures. This
table is referenced in Section VI.C.



Table A9: Baseline Results under Alternative Sample Restrictions

Dependent var: Presc. Opioids pc Prescription Opioids MR

(1) (2) (3) (4) (5) (6)

Cancer MR 94-96 1.191*** 1.055*** 1.018***

[0.249] [0.297] [0.288]

Presc. Opioids pc 0.00355*** 0.00684*** 0.00826***

[0.00134] [0.00231] [0.00268]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

Any Opioids MR All-cause mortality over 20

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc 0.00152 0.00697** 0.00885*** 0.0137 0.0515 0.102

[0.00171] [0.00273] [0.00329] [0.0361] [0.0477] [0.0668]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

SSDI SSI

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc 0.00504*** 0.00586*** 0.00652*** 0.00204** 0.00339** 0.00438*

[0.00106] [0.00155] [0.00173] [0.000851] [0.00169] [0.00239]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

SNAP IMR

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc 0.00941*** 0.00997*** 0.00919*** 0.175 -0.0297 0.0604

[0.00248] [0.00336] [0.00307] [0.130] [0.142] [0.150]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

Birth weight Fertility

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc -4.896*** -3.770* -6.480** 0.00108*** 0.00156** 0.00160**

[1.852] [2.240] [2.624] [0.000404] [0.000632] [0.000706]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

Notes: This table presents results for the first-stage regression and IV results using alternative sample
definitions. Our preferred specification restricts the sample to commuting zones with population higher
than 25,000 residents. When the sample is restricted to population above 15,000, the sample size
is 12,820 observations and 641 clusters. Analogously, when restricted to population above 40,000,
sample size is 10,880 and 544 cluster, and 9,620 and 481 clusters when restriction is above 55,000. All
regressions include state times year fixed effects and a set of control variables: contemporaneous cancer
mortality rate, share of population under 1 year old, share of population between 18 and 65, share
of population over 66 years old, share of Black, White, and Hispanic population, and share of female
population. Standard errors are clustered at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table
is referenced in Section III.C. and in Section VI.D.



Table A10: Alternative Sample Results for SNAP

Dependent variable: Share SNAP

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc 0.000144 0.00982*** 0.000213 0.0106***

[0.51] [3.28] [0.74] [3.23]

Cancer 94 96 0.0106*** 0.0116***

[4.67] [5.53]

Effective F-stat 16.63 13.70

Model OLS RF IV OLS RF IV

Sample Baseline Baseline Baseline Restricted Restricted Restricted

Observations 11,800 11,800 11,800 9,962 9,962 9,962

Clusters 590 590 590 533 533 533

Notes: Columns 1-3 report baseline results and columns 4-6 report results only for commuting zones
where county-level data were available. All regressions include state times year fixed effects and a set of
control variables: labor force participation, contemporaneous cancer mortality rate, share of population
under 1 year old, share of population between 18 and 65, share of population over 66 years old, share of
Black, White, and Hispanic population, and share of female population. Standard errors are clustered
at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section VI.D.



Table A11: Alternative Specifications

Dependent var: Presc. Op Any Op. SSDI SSI SNAP Fertility

Mortality Mortality

Presc. Opioids pc 0.00684*** 0.00643*** 0.00579*** 0.00322** 0.00922*** 0.00145***

[0.00204] [0.00232] [0.00136] [0.00152] [0.00270] [0.000529]

Extra covariate Empl. Empl. Empl. Empl. Empl. Empl.

Observations 11,800 11,800 11,800 11,800 11,800 11,800

Clusters 590 590 590 590 590 590

Dependent var: Presc. Op Any Op. SSDI SSI SNAP Fertility

Mortality Mortality

Presc. Opioids pc 0.00684*** 0.00643*** 0.00579*** 0.00322** 0.00922*** 0.00145***

[0.00204] [0.00232] [0.00136] [0.00152] [0.00270] [0.000529]

Extra covariate Unemp. Unemp. Unemp. Unemp. Unemp. Unemp.

Observations 11,800 11,800 11,800 11,800 11,800 11,800

Clusters 590 590 590 590 590 590

Notes: All regressions include state times year fixed effects and a set of control variables: contempora-
neous cancer mortality rate, share of population under 1 year old, share of population between 18 and
65, share of population over 66 years old, share of Black, White, and Hispanic population, and share of
female population. Standard errors are clustered at the CZ level. * p<0.10, ** p<0.05, *** p<0.01.
This table is referenced in Section VI.D.



Table A12: First Stage with Additional Control Variables: Recession, China Shock &
Unemployment

Presc. Opioids pc (1) (2) (3) (4) (5) (6) (7)

Cancer MR 94 96 1.078*** 1.137*** 1.101*** 1.104*** 1.075*** 1.074*** 1.075***

[0.266] [0.272] [0.268] [0.268] [0.264] [0.264] [0.263]

Extra control Recession NTR
Gap

ADH
1990

ADH
2000

Unemp.
94

Unemp.
95

Unemp.
96

Observations 11,800 11,800 11,740 11,740 11,800 11,800 11,800

Adjusted R2 0.57 0.57 0.57 0.57 0.56 0.56 0.56

Clusters 590 590 587 587 590 590 590

Notes: This table estimate the first stage including additional control variables to account for the 2001
Economic Recession and the China Shock. All regressions include state times year fixed effects and a
set of control variables Standard errors are clustered at the CZ level. All regressions are run on panel
at the CZ level with 11,800 observations and 590 clusters. * p<0.10, ** p<0.05, *** p<0.01. This table
is referenced in Section VI.E.



C Alternative Sources of Variation in the Marketing of Oxy-

Contin

In this appendix, we compare the approach presented in this paper to the work of Alpert

et al. (2022). We pay special attention to the ways in which we improve on their work,

with focus on the differences in specifications, the statistical power of the two approaches,

and we highlight concerns around the source of variation.

Both papers exploit geographic exposure to the initial marketing of OxyContin.

Alpert et al. (2022) use a state-level binary variation, whereas we exploit continuous

commuting-zone variation.54 Alpert et al. (2022) show that five states with early versions

of prescription drug monitoring programs, or triplicate prescriptions, received less mar-

keting from Purdue Pharma. These early versions of PDMPs were often referred to as

“triplicate” programs. We exploit a different dimension of the initial marketing strategy

of OxyContin: the fact that prescription opioids were initially promoted to the cancer

pain market, with the plan to expand from there to the much larger non-cancer pain

market. This produces variation in the marketing of opioids that tracks the cancer pain

market and that we measure as commuting-zone level cancer mortality between 1994 and

1996.

C.1 Specification

Exploiting different dimensions of the initial marketing strategy of OxyContin translates

into different empirical strategies. The event study specification proposed in each paper

is given by:

AELP: yst =
2017∑

τ=1983

βτ × 1( Nontriplicate )s × 1(t = τ) + α̃s + γ̃t + ζXst + εst ,

AB: ∆ ysct =
2018∑

τ=1989

ϕτ × CancerMRsct0 × 1(Y ear = τ) + γst + α ∆ Xct + υct .

where s indexes state, t indexes time, c indexes commuting zone, t0 defines the pre-

OxiContin period (1994-1996), and τ indexes event time. AELP reproduces Equation (1)

in Alpert et al. (2022), augmented to include the baseline controls (Xst) considered by the

authors: the fraction of the population that is white non-Hispanic, Black non-Hispanic,

Hispanic, the fraction ages 25–44, 45–64, 65+, the fraction with a college degree, and

log population. This specification includes state (αs) and year (γs) fixed effects. The

indicator variable 1(Nontriplicate)s is based on the initial triplicate status of the state in

1996.

54Using state-level data implies 50 potential units of analysis: 49 continental US states and the District
of Columbia. Using commuting-zone level data implies 740 potential units of analysis.



AB reproduces Equation 3 of this paper and its terms have been defined before. Dif-

ferent from Alpert et al. (2022), this specification allows the inclusion of state times year

fixed effects (γst) to account for important confounders at the state and year level. During

the period of analysis there was relevant state-level variation in response to the opioid epi-

demic, such as the implementation of Prescription Drug Monitoring Programs (PDMP),

the regulation of “pill mill” clinics, and the availability of naloxone. These policy changes

were quite common, for example, between 2007 and 2013, 17 states implemented some

version of a PDMP (Buchmueller and Carey, 2018). Between 2001 and 2017, every US

state passed a law that facilitates the widespread distribution and use of naloxone (Doleac

and Mukherjee, 2019). These changes are likely related to both the levels of opioid in the

population and downstream outcomes of the epidemic, biasing regression estimates.

C.2 Statistical precision

We study how the two strategies compare in their statistical power to measure the impacts

of the opioid epidemic on the outcomes of interest. To assess the statistical power of each

model, we compute the minimum detectable effect and compare its distribution. We

define this statistic as follows:

Minimum detectable effect = tcritical ×
semin

SDy

, (C.1)

where tcritical corresponds to the xth percentile of the t−distribution and SDy is the

standard deviation of the outcome variable, e.g., opioid-related mortality or change in

the share of the population on the SNAP. In the previous expression, semin is given by:

semin = min{seτ} = min{seτ0 , seτ1 , seτ2 , . . . , seτT } ,

where seτ corresponds to the standard error of the β̂τ and ϕ̂τ coefficients respectively,

e.g., seτ = se(β̂τ ). Thus, the minimum detectable effect of the vector of parameters βτ

is the smallest effect size on the outcome variable y for which the researcher can reject

the null hypothesis that the βτ with the smallest variance equals zero. Analogously, the

minimum detectable effect of the vector of parameters ϕτ requires the computation of

seτ = se(ϕ̂τ ).

We construct the distribution of this statistic for each model {AELP,AB}. To do

so, we perform S simulations of each model, and for each iteration s, we compute the

minimum detectable effect as defined in Equation C.1. In doing this exercise, we need

to take a stand on the data-generating process for the outcome variable of interest (y

and ∆y, respectively). We consider alternative distributions of the outcome variable

and parameter values. Table C1 summarizes the results of this exercise and Figure C1



presents selected distributions. We run 500 simulations for each proposed distribution

of the outcome variable and work with a tcritical = 1.96. For example, the series labeled

Beta(1,3) in Panel (a) corresponds to the distribution of the minimum detectable effect

of the vector of parameters βτ when the outcome y follows a Beta (1,3) distribution.

The Log-normal(8.85,7.15) closely captures the distribution of opioid-related mortality

as defined by Alpert et al. (2022). Similarly, the Log-normal(0.02, 0.04) closely captures

the distribution of the change in prescription opioid mortality as defined in this paper.

Our results in Figure C1 and Table C1 show that across distributions, the variation and

specification presented in this paper has substantially higher statistical power. Specifially,

at the median, we can identify effects that are 25% of the size that the model proposed

by Alpert et al. (2022).

C.3 Definition of triplicate status

From our review of Purdue Pharma and other pharmaceutical companies’ internal doc-

uments, we believe that when Purdue referred to “Triplicate States” it meant a group

of nine states and not five as stated in Alpert et al. (2022). We base this statement on

the fact that at least on two separate occasions, Purdue explicitly referred to triplicates

as the “nine states” (Figure C2), and to our knowledge, never mentioned only five. A

footnote in Alpert et al. (2022) comments on one of these references to the nine states

and deemed it an incorrect reference by Purdue. Academic documents that explain the

prescription drug monitoring programs that were in effect at the time also refer to a

group of nine states. These documents are more precise in their language and refer to

these programs as multiple-copy prescription programs (Joranson et al., 2002 and Fish-

man et al., 2004). Similar to today’s PDMPs, different states had different versions of the

program, but the informal industry name for these programs was “triplicate programs”.

In an internal email between Mallinckrodt sales specialists, also disclosed as part of the

opioid litigation, one sales specialist lists and explains to the other the history of the

triplicate programs and lists the original nine states (Figure C3). These are California,

Hawaii, Idaho, Indiana, Michigan, Illinois, New York, Rhode Island, and Texas.55

In light of these alternative definitions of the group of states with triplicate programs,

we inspect the time trends of overdose mortality in triplicate states and replicate the

main results in Alpert et al. (2022).56 First, in Figure C4 we inspect patterns in the

raw data. Panels (a) and (b) show the evolution of overdose mortality in five triplicate

states and nine triplicate states, respectively, compared to the evolution in the rest of the

55Mallinckrodt is a pharmaceutical company that is also part of the opioid litigation for their role in
the opioid epidemic. More precisely, “Collectively, Purdue, Actavis, Cephalon, Janssen, Endo, Insys, and
Mallinckrodt are referred to as “Marketing Defendants” Case No. 17-md-2804. United States District
Court for the Northern District of Ohio Eastern Division.

56We define overdose deaths as deaths involving underlying cause of death ICD-9 codes E850-E858,
E950.0-E950.5, E962.0, or E980.0-E980.5 and ICD-10 codes X40-X44, X60-64, X85, or Y10-Y14.



country. Using the alternative definition of triplicates provides less clear evidence that

“triplicate states” fare better regarding overdose mortality.

Event studies models in Figure C5 suggest a similar story. While the main results are

not overturned, they are attenuated and are often equal to zero statistically, suggesting

a smaller effect of the triplicate status on overdose mortality. We estimate the event

studies with and without population weights. The unweighted version is more sensitive

to the definition of triplicate status, which is natural since even though the sample of

“treated” states is increasing by 80%, the treated population is only changing by 21%.

Finally, Table C2 replicates the main estimate in Alpert et al. (2022). Consistent with

the event study estimates, results are attenuated when using the alternative definition

and are more sensitive when regressions are not weighted by population.

Finally, we test whether our instrument has predictive power in the group of triplicates

states as defined by Alpert et al. (2022). We find that the positive relationship between

mid-nineties cancer mortality and the supply of opioids is present in both triplicate and

non-triplicate states (Figure A19). In fact, the first stage is stronger in the five triplicate

states. This result is consistent with a story in which pharmaceutical companies need to

be more strategic in promoting opioids in places where they face additional barriers and

do not avoid the largest markets in the country (For example, California, Texas, New

York, and Illinois).57 Anecdotal evidence is consistent with this fact: All five “triplicate”

states filed lawsuits against Purdue Pharma and other pharmaceutical companies for

their direct responsibility in the unfolding of the opioid epidemic.58 We corroborate this,

in the reduced form estimates, our results are indistinguishable, both qualitatively and

statistically, in the five states triplicate states and the rest of the states, as panel b of

Figure A19 shows.59

57The first stage coefficient is 1.542 in the five triplicate states defined in Alpert et al. (2022), and
0.917 in the other states. This difference is not statistically different, and the p-value of such test is
0.203.

58For example, “New York State is in the throes of an opioid epidemic that has ravaged the lives
of its residents and drained its public coffers for more than two decades. This statewide catastrophe
happened because the Defendants in this case deliberately betrayed those duties through a persistent
course of fraudulent and illegal misconduct, in order to profiteer from the plague they knew would be
unleashed”—the People of New York, -against-Purdue Pharma et al.; March 28, 2019.

59The reduced form coefficient is 0.0072 in the five triplicate states defined in Alpert et al. (2022),
and 0.0073 in the other states. This difference is not statistically different, and the p-value of such test
is 0.97.



Figure C1: Distribution of the Minimum Detectable Effect: Alternative Specifications

(a) State-level Variation: Triplicate programs
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(b) Commuting-zone level variation: Cancer market
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Notes: Panel (a) shows the distribution of the minimum detectable effect for the AELP model under alternative distributions of the outcome variable.
For example, the series labeled Beta(1,3) corresponds to the distribution of the minimum detectable effect of the vector of parameters βτ when the
outcome y follows a Beta(1,3) distribution. The Log-normal(8.85,7.15) closely captures the distribution of opioid-related mortality as defined by Alpert
et al. (2022). The additional Log-normal distributions have the same mean but change the variance. Similarly, panel (b) shows the distribution of
the minimum detectable effect of the vector of parameters ϕτ , i.e., it corresponds to this paper’s model under alternative distributions of the outcome
variable. The Log-normal(0.02, 0.04) closely captures the distribution of the change in prescription opioid mortality as defined in this paper. This figure
is referenced in Section C.2
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Figure C2: Reference to Nine Triplicate States in OxyContin Launch Plan

Notes: This figure shows extracts of OxyContin Launch plans. The left panel reproduces a segment
of the OxyContin Launch Plan, page 27 September 27th 1995. The right panel is an extract from
OxyContin Budget Plan 1996, page 29. This figure is referenced in Appendix C.3.

Figure C3: Reference to Nine Triplicate States in Internal Communications

Notes: This figure shows extracts of the internal email from the opioid litigation with details on
the list of triplicate states. This figure is referenced in Appendix C.3.
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Figure C4: All Drug Overdose Mortality by Triplicate Status.

(a) Triplicate definition as in Alpert et al. (2022).
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(b) Alternative triplicate definition
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Notes: Time series for all drug overdose mortality. Panel (a) defines triplicates as California, Idaho, Illinois, New York, and Texas. Panel (b) adds
Hawaii, Indiana, Michigan, and Rhode Island for a total of 9 triplicate states. This figure is referenced in Appendix C.3.
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Figure C5: All Drug Overdose Mortality By Triplicate Status - Unweighted analysis.

(a) 5 Triplicates unweighted
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(b) 9 Triplicates unweighted
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(c) 5 Triplicates weighted

-5

0

5

10

15

C
oe

ffi
ci

en
t a

nd
 9

5%
 C

I

1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year

(d) 9 Triplicates weighted
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Notes: Figures in panels (a) and (c) reproduce Figure 4 in Alpert et al. (2022). Panels (b)
and (d) present the analysis using the alternative definition of triplicate states: we add Hawaii,
Indiana, Michigan, and Rhode Island for a total of 9 triplicate states. Event study models include
state and year fixed effects. 95% confidence intervals are generated using a clustered (at state)
wild bootstrap. Estimates are normalized to zero in 1995. This figure is referenced in Appendix C.3.
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Table C1: Distribution of the Minimum Detectable Effect for Alternative Specifications and Distributions of the Outcome Variables

Outcome variable Minimun effect size

Mean SD Min 1st pctile 5th pctile Mean Median 95th pctile 99th pctile Max

Distribution (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Alpert et al. (2022) model

Beta (2, 2) 0.50 0.22 0.36 0.41 0.46 0.62 0.60 0.85 0.96 1.24

Beta (1, 3) 0.25 0.19 0.33 0.38 0.44 0.61 0.59 0.82 1.05 1.34

Gamma (1, 2) 2.00 1.99 0.28 0.33 0.38 0.60 0.54 0.95 1.53 3.03

Gamma (2, 2) 4.00 2.82 0.31 0.36 0.40 0.61 0.58 0.90 1.31 1.85

Normal (0, 1) 0.00 1.00 0.32 0.39 0.46 0.63 0.60 0.91 1.08 1.58

Log-normal (2.5, 0.5) 2.50 0.50 0.30 0.39 0.46 0.62 0.59 0.92 1.12 1.59

Log-normal (7, 5) 7.01 5.02 0.24 0.31 0.39 0.59 0.53 1.00 1.64 3.87

Log-normal (8.85, 3.58) 8.80 3.56 0.27 0.38 0.44 0.61 0.57 0.94 1.32 2.26

Log-normal (8.85, 7.15) 8.84 7.14 0.24 0.29 0.36 0.58 0.51 1.01 1.77 4.40

Log-normal (8.85, 14.3) 8.86 14.28 0.12 0.17 0.22 0.51 0.39 1.09 2.51 8.92

Log-normal (0.02, 0.04) 0.02 0.04 0.07 0.11 0.17 0.48 0.33 1.14 2.85 11.16

Panel B: Arteaga and Barone (2023) model

Beta (2, 2) 0.50 0.22 0.13 0.14 0.14 0.15 0.15 0.15 0.16 0.16

Beta (1, 3) 0.25 0.19 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.15

Gamma (1, 2) 2.00 2.00 0.12 0.12 0.12 0.13 0.13 0.14 0.15 0.15

Gamma (2, 2) 4.00 2.83 0.12 0.13 0.13 0.14 0.14 0.15 0.15 0.15

Normal (0, 1) 0.02 0.04 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.15

Log-normal (2.5, 0.5) 2.50 0.50 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.15

Log-normal (7, 5) 7.00 5.00 0.11 0.11 0.12 0.13 0.13 0.14 0.14 0.15

Log-normal (0.02, 0.02) 0.02 0.02 0.09 0.10 0.10 0.12 0.12 0.13 0.13 0.14

Log-normal (0.02, 0.04) 0.02 0.04 0.04 0.06 0.07 0.09 0.09 0.10 0.11 0.12

Log-normal (0.02, 0.08) 0.02 0.08 0.01 0.02 0.04 0.06 0.06 0.08 0.09 0.09

Log-normal (8.85, 7.15) 8.83 7.11 0.10 0.11 0.12 0.13 0.13 0.14 0.14 0.14

Notes: This table presents summary statistics for the distribution of the minimum detectable effect. Panel A considers the model proposed by Alpert et al.
(2022) and panel B considers the model proposed in this paper. Columns (1) and (2) present the mean and standard deviation of the simulated outcome of
interest (y and ∆y respectively). Columns (3) to (10) present moments of the distribution of the minimum detectable effect, pctile stands for percentile. This
table is referenced in Appendix C.2.

92



Table C2: Replication of Table 1 in Alpert et al. (2022)

Triplicate state group (n) Nine Five Nine Five

Nontriplicate × (1) (2) (3) (4)

1996–2000 0.998*** 1.173 0.711 1.229**

SE, CI [0.356] [0.390, 2.374] [0.538] [0.017, 2.483]

Coeff. change 14.9% 42.1%

2001–2010 2.257** 3.667** 1.998** 3.232**

SE, CI [0.913] [1.521, 6.210] [0.994] [1.011, 5.318]

Coeff. change 38.5% 38.2%

2011–2017 2.793 6.061** 3.203** 4.714***

SE, CI [1.891] [2.812, 9.371] [1.337] [1.811, 7.253]

Coeff. change 53.9% 32.1%

Weighted No No Yes Yes

Covariates No No Yes Yes

Region-time dummies No No Yes Yes

Observations 1,377 1,377 1,377 1,377

Notes: Columns (2) and (4) of this table reproduce columns (1) and (4) of Table
1 in Alpert et al. (2022) respectively. Columns (1) and (3) present the analysis us-
ing an alternative definition of triplicate status. This table is referenced in Appendix C.3.



D Instrumental Variable Analysis

In this appendix we implement an instrumental variable strategy with the goal of scaling

our reduced-form results by the increase in prescription opioids. This strategy is given

by the following equations, which are run over our sample of commuting zones for the

period 1999-2018:

First Stage:

∆ Presc. Opioidsct = α1 + ϕ CancerMRct0 + α ∆ Xct + γst + υct . (D.1)

Second Stage:

∆ yct = τ1 + β ̂∆Presc. Opioidsct + τ ∆ Xct + λst + εct , (D.2)

where c indexes commuting zones, t indexes years, s indexes states, and t0 is defined

as the average of the pre-OxyContin period. The operator ∆ corresponds to the long-

change of variable Wct. Regarding Equation (D.1), Presc. Opioidsct corresponds to doses

of opioids per capita shipped to commuting zone c in year t and CancerMRct0 is the

cancer mortality rate in commuting zone c in 1994-1996 (t0). In Equation (D.2), yct

refers to one of our outcomes of interest, e.g., a measure of opioid-related mortality. Both

equations include a vector ∆ Xct that represents the long-changes in the time-varying

control variables. The control variables included are contemporaneous cancer mortality,

share of the population over 66, share of the population 18-65, share of the population

under 1 year, shares of the white and black populations, share of females, and share of

Hispanic population.

Next we take Equations D.1 and D.2 to the data. Commuting zones with the highest

cancer incidence at the time of OxyContin’s launch received 64% more opioids per capita

than their counterparts—i.e., the 95th percentile relative to the 5th percentile. Using

this increase as an exogenous change, we estimate that an additional dose of prescription

opioids per capita caused an increase in prescription opioid mortality of 0.0068 points and

in all opioid mortality of 0.0065 points. The estimates presented in columns 3 and 6 of

Table D1 are statistically significant using t-ratio inference, Anderson-Rubin weak instru-

ment robust inference, and the tF procedure suggested by Lee et al. (2020).60 Our results

imply that when doses per capita increase from the 25th to the 75th percentile—i.e., a

60Lee et al. (2020) suggest that the standard practice of relying on the first-stage F exceeding some
threshold (e.g., 10) delivers tests of incorrect size. They propose to construct the “tF 0.05 standard
error”, which inflates the usual standard errors to take into account the strength of the first stage. Based
on Lee et al. (2020), we use a correction factor of 2.75

1.96 = 1.4031 to compute the “tF 0.05 standard error.”
To facilitate its interpretation, we present the t-statistic computed with the corrected standard errors.
This t-statistic should be compared with a critical value of 1.96 to assess the null hypothesis.



5.02 dose increase—mortality from prescription opioids increases by 88.6% and all opioid

mortality increases by 39.3%.61

The ordinary least squares (OLS) estimates (columns 1 and 4 of Table D1) differ

considerably from the IV estimates. We find a positive correlation between opioid supply

and opioid mortality rate, but the difference in magnitude between the OLS and the IV

estimates suggests that the former suffers from downward bias. Put another way, by

looking at the correlation between opioid supply and opioid deaths, we would underes-

timate the role of the supply of prescription opioids in explaining the rise in mortality.

The negative bias in the OLS estimates is consistent with commuting zones that receive a

disproportionate amount of marketing being positively selected on observable character-

istics: Areas initially targeted by OxyContin campaigns had better access to healthcare

and a larger number of physicians per capita, which served as OxyContin initial network.

Alternative instrumental variable approach. Our instrumental variable approach is

similar in spirit to a shift-share instrument. In this research design, the shares mea-

sure differential exposure to common shocks and identification is based on its exogeneity

(Goldsmith-Pinkham et al., 2020). In our application, the shares are cancer rates in

the mid-1990s, which capture exposure to the marketing of prescription opioids, and the

shift is the national growth of Purdue Pharma’s marketing or the growth in the supply of

prescription opioids. Our preferred specification uses as an instrument cancer mortality

before the launch of OxyContin, which highlights the fact that our only source of exoge-

nous variation corresponds to the shares. In Appendix Table D5, we show results using

the shift-share instrument. To construct this instrument, we use the national growth rate

of prescription opioids as the shift component. The results are quantitatively indistin-

guishable from our preferred specification. As Goldsmith-Pinkham et al. (2020) point

out, using a Bartik instrument is “equivalent” to exploiting the shares as an instrument.

This is because the temporal variation induced by the growth of prescription opioids is

mostly absorbed by the time dimension of our state times year fixed effects.

61The standard deviation of the distribution of prescription opioids per capita between 1997-2018 is
4.34, thus a change from the 25th to the 75th percentile in such distribution represents 1.15 of a standard
deviation.



Table D1: Direct Effects on Opioid Mortality

Dependent var: Prescription opioids MR Any Opioid MR

(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.00374*** 0.00679*** 0.00419*** 0.00646***

[0.00117] [0.00200] [0.00139] [0.00231]

tF 0.05 se (0.00281) (0.00324)

t-stat using tF 0.05 se 2.3876 1.9747

AR p-value 0.0000 0.0019

Cancer MR 94-96 0.00732*** 0.00697***

[0.00167] [0.00229]

Effect size (%) 49.47 88.63 25.73 39.30

Model OLS RF IV OLS RF IV

Observations 11,800 11,800 11,800 11,800 11,800 11,800

Clusters 590 590 590 590 590 590

Adj R2 0.4304 0.3908 0.5368 0.5144

Effective F-stat 16.63 16.63

Cragg-Donald Wald F-stat 358.58 358.58

Notes: Control variables in long changes are contemporaneous cancer mortality rate, share of population under 1 year old, share of population between 18 and
65, share of population over 66 years old, share of Black, White, and Hispanic population, and share of female population. All regressions include state times
year fixed effects. MR stands for mortality rate. Effect size indicates the percent change in the dependent variable relative to its mean when doses of prescription
opioids per capita increase from the 25th to the 75th percentile. Standard errors in square brackets are clustered at the CZ level. Using these standard errors,
we report * p<0.10, ** p<0.05, *** p<0.01. tF 0.05 se, t-stat using tF0.05 se, and the AR p-value correspond to weak-instrument-robust inference procedures.
This table is referenced in Appendix D.

96



Table D2: Effects of the Opioid Epidemic on Other Mortality Measures

Dependent var: All cause mortality Deaths of Despair

(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.0213 0.0286 -0.000442 -0.00494

[0.0136] [0.0469] [0.000732] [0.00621]

tF 0.05 se (0.0658) (0.0087)

t-stat using tF 0.05 se 0.4346 -0.459

AR p-value 0.5319 0.4311

Cancer MR 94-96 0.0309 -0.00533

[0.0515] [0.00699]

Effect size (%) 3.68 4.94 -0.74 -7.39

Model OLS RF IV OLS RF IV

Dependent var: Alcoholic Liver Diseases and Cirrhosis Suicide

(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.000765** 0.00552* -0.0000460 -0.00582

[0.000353] [0.00292] [0.000430] [0.00378]

tF 0.05 se (0.0041) (0.0053)

t-stat using tF 0.05 se 1.3473 -1.0974

AR p-value 0.0351 0.1065

Cancer MR 94-96 0.00596** -0.00628

[0.00302] [0.00402]

Effect size (%) 3.23 23.34 -0.16 -19.80

Model OLS RF IV OLS RF IV

Notes: The all-cause mortality measure excludes deaths from cancer. Deaths of despair refers to deaths
from suicide, chronic liver disease, cirrhosis, and poisonings that are attributable to alcohol. Each
regression is run over a sample of 11,800 observations with 590 clusters (commuting zones). Control
variables in long changes are contemporaneous cancer mortality rate, share of population under 1 year
old, share of population between 18 and 65, share of population over 66 years old, share of Black, White,
and Hispanic population, and share of female population. All regressions include state times year fixed
effects. Effect size: indicates the percent change in the respective dependent variable relative to its mean
when doses of prescription opioids per capita increase from the 25th to the 75th percentile. Standard
errors in square brackets are clustered at the CZ level; using these standard errors, we report * p<0.10,
** p<0.05, *** p<0.01. tF 0.05 se, t-stat using tF0.05 se, and the AR p-value correspond to weak-
instrument-robust inference procedures. This table is referenced in Section V.B.
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Table D3: Effects of the Opioid Epidemic on the Share of Social Insurance and
Welfare Programs Recipients

Dependent var: SSDI SSI

(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.000444*** 0.00574*** 0.0000137 0.00184**

[0.0000985] [0.00132] [0.0000896] [0.000841]

tF 0.05 se (0.0018) (0.0012)

t-stat using tF 0.05 se 3.1250 1.5612

AR p-value 0.0000 0.0107

Cancer MR 94-96 0.00619*** 0.00198**

[0.000385] [0.000803]

Effect size (%) 5.36 76.39 0.27 38.43

Model OLS RF IV OLS RF IV

Dependent var: SNAP

(1) (2) (3)

Prescription opioids pc 0.000144 0.00982***

[0.000285] [0.00299]

tF 0.05 se (0.0041)

t-stat using tF 0.05 se 2.4134

AR p-value 0.0000

Cancer MR 94-96 0.0106***

[0.00227]

Effect size (%) 0.58 56.70

Model OLS RF IV

Notes: Each regression is run over a sample of 11,800 observations with 590 clusters (commuting
zones). Control variables in long changes are contemporaneous cancer mortality rate, share of
population under 1 year old, share of population between 18 and 65, share of population over 66
years old, share of Black, White, and Hispanic population, and share of female population. All
regressions include state times year fixed effects. Effect size: indicates the percent change in the
respective dependent variable relative to its mean when doses of prescription opioids per capita
increase from the 25th to the 75th percentile. Standard errors in square brackets are clustered at
the CZ level; using these standard errors, we report * p<0.10, ** p<0.05, *** p<0.01. tF 0.05
se, t-stat using tF0.05 se, and the AR p-value correspond to weak-instrument-robust inference
procedures. This table is referenced in Section V.B.
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Table D4: Effects of the Opioid Epidemic on Infant and Fertility Outcomes

Dependent var: Infant Mortality Rate Sh. Low Birth Weight

(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.0511** -0.0232 0.000169* 0.000905

[0.0242] [0.140] [0.000102] [0.000640]

tF 0.05 se -0.19643 -0.0009

t-stat using tF 0.05 se -0.11811 1.002273

AR p-value 0.8678 0.1272

Cancer MR 94-96 -0.0250 0.000976

[0.157] [0.000665]

Effect size (%) 4.06 -1.84 0.62 5.55

Model OLS RF IV OLS RF IV

Dependent var: APGAR Score - All Infants APGAR Score - infant casualties

(1) (2) (3) (4) (5) (6)

Prescription opioids pc -0.000501 -0.0169* 0.0155 0.282*

[0.00188] [0.00994] [0.0179] [0.153]

tF 0.05 se (0.01395) (0.21467)

t-stat using tF 0.05 se -1.2118 1.3137

AR p-value 0.0674 0.0383

Cancer MR 94-96 -0.0189* 0.319*

[0.0107] [0.164]

Effect size (%) -0.03 -0.96 1.38 25.17

Model OLS RF IV OLS RF IV

Dependent var: Fertility rate Gestation

(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.0000665 0.00153*** -0.000164 -0.0489***

[0.0000621] [0.000566] [0.00304] [0.0186]

tF 0.05 se (0.00079) (0.026100

t-stat using tF 0.05 se 1.92663 -1.87378

AR p-value 0.001 0.0011

Cancer MR 94-96 0.00165*** -0.0527***

[0.000482] [0.0171]

Effect size (%) 0.43 9.85 0.00 -0.63

Model OLS RF IV OLS RF IV

Notes: Each regression is run over a sample of 11,800 observations with 590 clusters. Control variables in long changes
are contemporaneous cancer mortality rate, share of population under 1 year old, share of population between 18 and 65,
share of population over 66 years old, share of Black, White, and Hispanic population, and share of female population.
All regressions include state times year fixed effects. Effect size: indicates the percent change in the respective dependent
variable relative to its mean when doses of prescription opioids per capita increase from the 25th to the 75th percentile.
Standard errors in square brackets are clustered at the CZ level; using these standard errors, we report * p<0.10, **
p<0.05, *** p<0.01. tF 0.05 se, t-stat using tF0.05 se, and the AR p-value correspond to weak-instrument-robust inference
procedures. This table is referenced in Section D.
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Table D5: Baseline Results under a Shift-share Instrument

Dependent var: Presc. Opioids pc Presc. Opioids MR Any Opioids MR SNAP

(1) (2) (3) (4)

Shift Share 0.00417***

[0.000997]

Effective F 17.47

Presc. Opioids pc 0.00644*** 0.00635*** 0.00927***

[0.00188] [0.00219] [0.00277]

Model FS IV IV IV

Dependent var: SSDI SSI Infant Mortality Rate Fertility rate

(5) (6) (7) (8)

Presc. Opioids pc 0.00553*** 0.00319** -0.0218 0.00149***

[0.00127] [0.00158] [0.120] [0.000548]

Model IV IV IV IV

Notes: Column 1 reports the estimated coefficient for the first stage. Columns 2 to 8 present results from IV regressions using the shift-share instrument. Each
regression is run over a sample of 11,800 observations with 590 clusters (commuting zones). All regressions include state times year fixed effects and a set of
control variables: contemporaneous cancer mortality rate, share of population under 1 year old, share of population between 18 and 65, share of population
over 66 years old, share of Black, White, and Hispanic population, and share of female population. Standard errors are clustered at the CZ level. * p<0.10, **
p<0.05, *** p<0.01. This table is referenced in Section VI.A.
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