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Abstract

This paper considers the design of an optimal paid sick leave contract and estimates the welfare gains
of its implementation. I propose a model of paid sick leave provision. In this model, risk-averse
workers face a health shock and decide how many days to be on leave. Given workers’ behavioral
responses a risk-neutral social planner chooses the optimal contract to maximize social welfare; which
is a function of workers’ utility and production losses and externalities induced by sick pay provision.
Exploiting unique administrative data on paid sick leave utilization, I estimate workers’ preferences
over sick leave utilization. I use the estimated model to derive the optimal sick pay contract and
estimate the welfare gains from its implementation. I find that relative to the current system, the
optimal system would provide more insurance for short-term sickness and less insurance, i.e., lower
replacement rates, for longer sickness spells. I estimate that workers are willing to give up 1.53% of
their earnings to be insured under the optimal policy.
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I Introduction

Social insurance programs offer valuable protection against a broad range of risks that could be
detrimental to individuals’ well-being, such as health deterioration that limits one’s ability to
work. In particular, paid sick leave provides income replacement for workers who suffer from
short-term impairments caused by non-work-related sickness, e.g., the common flu or back pain.1

Paid sick leave programs are ubiquitous. Only three countries in the Organization for Eco-
nomic Cooperation and Development (OECD) do not provide universal access to paid sick leave
for employees: Canada, Japan, and the United States.2 Despite its popularity, there is wide het-
erogeneity in the institutional features of paid sick leave contracts. For example, the share of
income paid back to workers upon an absence, i.e., the replacement rate, varies between zero and
one. While nonpayable or waiting periods are very common—around 60% of systems have this
feature—its duration varies from 3 to 15 days.3

The nature of the health shock insured by paid sick leave provision—short spells of non-work-
related illness—implies that virtually every worker could benefit from the risk protection under
the program and demand paid sick leave. To put this figure in context: the weekly estimated
demand for sick leave is 9.8 percent of the workforce, the demand for disability insurance amounts
to a half of this value (4.1 percent in the U.S.) and workers’ compensation is around a fourth of
it—2.7 claims per 100 employees.4

Designing a paid sick leave system is challenging. Sick pay provision lowers the opportunity
cost of time off and could induce workers to request more sick days than they would absent of
insurance. This response could partially offset the welfare gains of sick pay. This is the traditional
trade-off in the design of social insurance: balancing the value gained from risk protection against
the costs from behavioral responses to this coverage. Nonetheless, if workers do not take time
off and work when sick, they could create production losses—as sickness impairs one ability to
work—and production externalities—if sickness is contagious. Workers’ responsiveness to sick
pay could improve welfare via a reduction in the costs of sick work. This alters the traditional

1Paid sick leave is different from workers’ compensation programs and disability insurance programs. The for-
mer provides income replacement and medical benefits in case of work-related sickness. The latter provides income
replacement in case of permanent or long-term impairments to working ability.

2Traditionally, in the U.S., employers voluntarily provide paid sick leave, which results in substantial inequality
in coverage across jobs, see Maclean et al. (2020) and Balance (2021) for a summary of the state of paid sick leave
access in the U.S.

3Nonpayble periods work like a deductible that resets with every new sick leave spell. These resetting deductibles
are similar to those used in automobile or homeowners insurance: Separate deductibles apply to each loss. Table 1
summarizes sick pay systems for 22 countries.

4See Susser and Ziebarth (2016) for estimates of the demand of sick leave in the U.S. context, Social Secu-
rityAdministration et al. (2012) for estimates of disability insurance prevalence, and Bureau of Labor Statistics (2021)
for figures on worker’s compensation use.
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insurance design trade-off and raises the question: What is the optimal paid sick leave system?
The main contribution of this paper is to address this question. To do so, I first propose and es-

timate a model of paid sick leave provision. In the model, risk-averse expected utility maximizer
workers choose their sick leave utilization and labor supply, trading off the utility of time off
with its consumption loss. A risk-neutral social planner provides sick pay coverage and chooses
its optimal design. In this choice, the planner trades off the value of risk protection with work-
ers’ behavioral responses, incorporating production costs and health externalities associated with
sick work. I exploit unique administrative data on sick leave claims to estimate the parameters
of workers’ choices and quantify the value of risk protection, the costs of insurance provision in
terms of moral hazard, the production cost of time off and contagious externalities, and the under-
lying distribution of health shocks.5 I then use these estimates to determine the replacement rates
that characterize the optimal sick paid system. The optimal system features a low replacement
rate for short claims, i.e., up to three days long claims are partially insured, with most of the cost
on the worker side. Longer sickness spells are covered at a higher rate, and the replacement rate
is increasing with sick leave duration. I estimate that workers are willing to give up 1.53% of their
earnings to be insured under the optimal policy.

The empirical application of this paper exploits the Chilean setting, which has several advan-
tages. First, it has a comprehensive paid sick leave system that covers all workers and features
only one plan designed by the central government.6 This contract has features that are similar to
many other countries. In particular, it has a 3-days nonpayable period.7 Starting on the fourth day,
there is full coverage of each missed day, i.e., the replacement rate is one. If the sick leave spans
11 days or more, the nonpayable period is reimbursed; this implies that the average replacement
rate varies with the duration of a claim and jumps discretely at 11 days.

The second advantage of this setting is that Chile has greatly detailed administrative data. I
observe the universe of workers insured by the government who are eligible to file a sick leave
claim between 2015 and 2019 and their utilization of sick leave benefits.8 This database includes
rich demographic information at the worker and claim levels. In particular, it contains the ex-
act beginning and end dates and the primary diagnosis related to a sick leave claim. I combine
these data with medical assessments from the Peruvian Handbook of Recovery Times (EsSalud,
2014). This handbook specifies the average recovery times for 2,763 unique disease codes.9 These

5In this paper, moral hazard refers to the responsiveness of workers’ demand for sick leave to changes in the gen-
erosity of sick leave benefits. This definition follows the conventional use of the term moral hazard in the healthcare
literature (Pauly, 1968; Cutler and Zeckhauser, 2000; Einav et al., 2013; Einav and Finkelstein, 2018)

6This is the most common practice in countries with mandated sick pay insurance provision and allows the
empirical implementation to abstract from adverse selection concerns.

7France, Italy, Portugal, and the United Kingdom also have 3-days nonpayable periods.
8This group amounts to 70% of the Chilean workforce, an average of four million in a given year.
9Crucially, claims data and medical assessments are reported at the four-digit level of the the International Clas-
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recommendations are adjusted based on workers’ gender, age, and occupation.
Exploiting these data, I document that workers are responsive to the generosity of the paid

sick leave contract. I show that workers bunch around the discontinuity in the replacement rate.
To do so, I construct an underlying distribution of recovery times leveraging the handbook’s rec-
ommendations and compare this distribution with the observed distribution of requested days. I
estimate that 11-day-long sick leave claims are 4.55 percentage points more likely than what the
underlying distribution of health predicts.

Workers behavioral responses vary by the day of the week workers fall sick. For example,
incentives to file a two-day-long sick leave claim on a Thursday differ from those to file a two-
day claim on a Tuesday. I consider the following exercise: I fix the duration of a sick leave claim
and inspect the share of claims filed on each day of the week. I find an excess mass on com-
binations of days of the week and duration that allow the worker to extend her leave through
the weekend—“weekend-streak combinations”. I document that workers are, on average, 12.33%
more likely to file a weekend-streak claim than to file a sick leave claim of the same duration
on any other day of the week. To capture this empirical regularity, the model allows workers’
behavior to vary with the day of the week of a sick leave claim.

The optimal contract balances the benefits of risk protection with the cost associated with
moral hazard and production losses. A more generous sick pay scheme would increase work-
ers’ well-being by offering more risk protection. Workers would respond to this policy change
increasing sick pay utilization—moral hazard response. This response increases the pool of work-
ers taking sick leave—more absences—and reduces production externalities—fewer individuals
working sick. Thus, moral hazard is not necessarily welfare decreasing. The optimal level of
benefits depends on risk preferences, workers’ behavioral responses, production losses and con-
tagious externalities, and the distribution of risks. The principal empirical focus of this paper is
to quantify these elements.

To determine the optimal system, I proceed in two steps. The first step concerns workers’ sick
pay utilization choices. In this step, I recover a vector of preference parameters from workers’
observed leave-claiming behavior. The second step is to find the replacement rates that maximize
total welfare. The validity of this approach relies on the fact that the worker’s problem can be
viewed as a two-stage problem. Once the health shock is realized and uncertainty is resolved,
workers optimally choose their sick pay utilization. Their expected utility depends on their risk
preferences: more risk-averse workers would prefer contracts with more coverage; this is ac-
counted for in the second step. The main strength of this approach is that I only rely on workers’
observed decisions to estimate parameters governing their choices and do not need to assume
that the current sick pay plan is optimal.

sification of Diseases 10th revision (ICD-10)
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I estimate the model of workers’ behavior by the simulated method of moments (SMM). The
main empirical challenge is to disentangle the underlying distribution of health from the distri-
bution of workers’ preferences. To overcome this challenge, I build the underlying distribution of
health exploiting the Peruvian Handbook of Recovery Times recommendations and the observed
diagnoses. This approach: (i) provides an objective measure of recovery times constructed out-
side the structure of the Chilean system, and (ii) does not impose parametric assumptions on this
distribution. It also allows for an arbitrary correlation between health states and workers’ income
to capture that wealthier workers tend to have better health and could require shorter absences.

The vector of worker’s preferences includes day-specific valuation from time off and compli-
ance costs that capture the risks and efforts associated with extending absences above the time
needed for recovery. I exploit variation on the day of the week when a sick leave claim is filed
as a quasi-exogenous shifter of the temptation to extend sick leave claims. First, the excess of
weekend-streak sick leave claims informs how workers’ utility from a sick leave claim of the
same duration varies with the day of the week the claim is filed. Second, I consider workers with
similar characteristics and the same assigned recovery time—i.e., I hold workers’ health, age, and
occupation fixed—and compare their demand for sick pay across days of the week. I compare the
share of claims filed for a duration that matches the assigned recovery time to the share of claims
filed for an extra day. This difference is informative on how costly it is for individuals to ask for
an extra day of leave, and crucially, it keeps the incentives for extending sick leave claims fixed.
These comparisons provide identifying variation to estimate the distribution of compliance costs.

The estimated model provides a good fit for the targeted and nontargeted moments. I exploit
the discontinuity at 11 days—a nontargeted moment—to assess the model performance. The
model predicts that if a worker realizes a health state just under 11 days, she will take advantage
of the proximity to the full-coverage region and fake her type to gain full coverage. The proposed
model can reproduce the excess mass at 11 days quite well. I estimate that, in the data, the 11-day
duration accumulates an additional 4.50% mass than its neighbors. Using the model-simulated
sample, I estimate an additional 4.03%.

I combine these estimates and the model of sick pay provision to derive the replacement rates
that maximize aggregate welfare. One important input in this exercise are estimates of production
losses and externatilities of working sick behavior which I obtain from survey data on productiv-
ity losses associated to sickness. The optimal policy differs from the current system in three key
ways. First, it offers partial replacement, with an average replacement rate of 0.36, for claims of
up to three days. This shift increases the utility of sick workers who would not take sick leave
under the current system but do so under the optimal policy. At the same time, partial coverage
constrains moral hazard since most of the cost of those absences is faced by workers.

Second, the optimal policy eliminates the discontinuity at 11 days and exhibits a higher aver-
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age replacement rate between 4 and 10 days. Doing so curbs the cost of the behavioral responses
to the program incentives and provides more risk protection. Third, the optimal policy only fully
replaces sick leave claims over 11 days. The average replacement rate is increasing, as in the
current system, but it is less generous for longer claims. Taken together, these changes in the
replacement rate reflect that the workers value a contract that offers more protection for shorter
claims to smooth consumption across different health states. I estimate that workers are willing
to give up 1.53% of their earnings to be insured under the optimal policy.

This paper contributes to several areas of the economics literature. First, it contributes to a
large body of literature on public insurance programs. This literature has modeled the trade-offs
between protection against risk and moral hazard present in unemployment risks (Hopenhayn
and Nicolini, 1997; Chetty, 2008; Hendren, 2017), disability and retirement risks (Gruber, 2000;
Low and Pistaferri, 2015), healthcare risks (Cutler and Zeckhauser, 2000; Einav et al., 2010; Han-
del et al., 2015; Ho and Lee, 2020; Marone and Sabety, 2022) , and work-related injuries (Powell
and Seabury, 2018; Cabral and Dillender, 2020). This paper is the first to propose a theoretical
framework for designing the provision of paid sick leave and quantify the welfare gains from its
implementation.

This paper is close to Gilleskie (1998), Gilleskie (2010), and Maclean et al. (2020). Gilleskie’s
work focuses on the medical care consumption and absenteeism decisions of employed individ-
uals with acute illnesses and evaluates the introduction of paid sick leave coverage. Similarly,
Maclean et al. (2020) evaluate the labor market effects of sick pay mandates in the US and extend
the Baily–Chetty framework of optimal social insurance to assess the welfare consequences of
mandating sick pay. Their framework allows researchers to study the effects of policies that vary
the share of employees with access to sick pay. This paper differs in two critical dimensions. To
begin with, I propose a structural approach to conducting welfare analysis. This approach does
not rely on the assumption that policy changes are marginal.10 Relaxing this assumption is impor-
tant since it allows the optimal policy to differ freely from the actually implemented policy, i.e., it
allows for non-marginal policy changes. Second, this paper directly tackles the design question,
it provides a framework to answer what is the level of generosity of the optimal policy and how
it should vary with sick pay utilization.

This paper also relates to the empirical literature on sick pay insurance. Exploiting arguably
exogenous variations, the literature has documented a positive response of sick pay utilization
to increases in benefit levels (Johansson and Palme, 2005; Ziebarth, 2013; De Paola et al., 2014;
Ziebarth and Karlsson, 2014; Pollak, 2017; Böckerman et al., 2018; Cronin et al., 2022; Marie and
Castello, 2022). This paper goes beyond workers’ responses to policy changes and proposes a

10For the validity of the sufficient statistics approach, the analyzed policy changes should be infinitesimal or at
least close enough to infinitesimal for first-order approximations to be precise Kleven (2021).
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quantifies the welfare effects of these policy changes.
Additionally, this paper is the first to use administrative data on sick leave claims at the indi-

vidual level.11 These data allow me to study daily leave-taking behavior and estimate an individ-
ual demand for sick pay. In addition, these data are less prone to measurement error. Many papers
have used survey questions that ask respondents how many days of work they have missed due
to illness in a reference period. The use of survey data raises the usual measurement error issues
with self-reported recall data and prevents researchers from distinguishing the incidence of ab-
sences from their length. Observing the length of absences is a crucial input for quantifying moral
hazard responses, as workers could extend their absences to obtain more sick pay.

This paper proceeds as follows. Section II presents the theoretical framework and discusses
the optimal design of a paid sick leave system. Section III describes the empirical setting that I
study and the data. Section IV presents the empirical implementation of the model. Section V
presents the model estimates and main results. Section VI discusses the optimal policy. Section
VII concludes.

II Theoretical Framework

In this section, I present a model of paid sick leave provision and discuss the derivation of the
optimal sick leave insurance contract under the assumptions of this model. First, I model the
choices of an expected utility–maximizing worker who faces uncertainty about her health and
her ability to work and outline a definition of moral hazard that applies to this setting. Second,
I describe how workers’ choices and provision of sick pay affect production. Third, I discuss the
social planner’s problem and the optimal system.

II.A Workers

Workers are subject to a stochastic health shock (θ,dow), drawn from a distribution G(θ,dow),
where θ represents the number of days that a worker is sick and dow indicates the day of the week
when a worker falls sick. I assume that θ is discrete and bounded between zero and M and that
higher values of θ are associated with longer sickness spells.12 The sickness distribution G(θ) ac-

11Cronin et al. (2022) construct a similar dataset for the Scott County School District (SCSD) in Kentucky, which
allows a detailed study of teachers’ use of paid sick leave. While the data structure is similar to the one used in
this paper, I observe sick leave utilization regardless of workers’ occupations. Marie and Castello (2022) also exploit
administrative data for Spain, though their data are at the spell rather than the individual level. The data in this
paper capture the sick leave choices of around two million workers in a year and relies on more than 300,000 sick
leave claims.

12The sickness level is bounded to capture the fact that paid sick leave insurance aims to provide risk protection
from impairments to working ability when full recovery is foreseeable. I focus on sick leave claims for up to 30 days
in the empirical application.
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cumulates positive mass in the no-sickness realization; i.e., the value of zero for θ corresponds to
the healthy state.13

Sick pay utilization. Upon the realization of the health shock (θ,dow), the worker decides her sick
pay utilization to maximize her utility. I assume the worker derives utility over consumption (c)
and time outside of work (s), given her budget constraint. The budget constraint is c = w(M −
s) + wB(s), where w is the daily wage rate, M is the number of workable days in a month which
the worker takes M as given, and B(s) represents the sick pay transfer function.14 I assume that
B(s) is a piece-wise linear function, with marginal replacement rates (bj) constant for sick leave
claims in a duration bracket [s,s̄], and that it is a non-decreasing function of s. The worker’s utility
takes the following form:

u(s;φ,f,w,B,θ,dow) = w(M − s+B(s)) + φ (sl(s; dow)− θ − f(s− θ) + q 1{weekend}) . (1)

The second term represent utility from time outside work. The preference parameter φ reflects
the opportunity cost of time away from work relative to the time allocated to consumption. The
term (sl(s; dow) − θ) captures the utility cost of working while sick (sl < θ), and the gains from
taking time off when not sick (sl > θ). In this expression, sl indicates business days, a function of
total days on leave and the day of the week a sick leave claim starts.15

The compliance costs function f(s− θ) captures the utility costs of filling a sick leave claim. It
is increasing in (s − θ) and its normalize to zero if the difference between s and θ is non-positive.
This implies that there is no cost for the worker to file a sick leave claim for the duration of her
health shock, but there is a cost of filing a claim for a duration above her health shock. These costs
are motivated on the risks and efforts associated with extending absences above the time needed
for recovery. For example, if a worker is caught in violation of mandatory rest, the claim can be
denied—and not paid by the insurance company—and his reputation could suffer—impacting
future promotions or increasing the likelihood of being fired.16 The compliance costs function
can also reflect the effort that the worker could exert to find a physician who would sign off on
a longer leave. These mechanisms are captured in a reduced form way; i.e., I do not model the

13In this section, I omit i subscripts to simplify notation and present the baseline version of the model. I later
describe how individuals might vary across (i) their distribution of health shocks, (ii) preferences over time outside
work, and (iii) preferences over extending absences.

14For individuals working full-time, M is the number of workdays in a month.
15For example, two days long sick leave claim that starts on a Monday represents two business days away from

work, while a sick leave claim that starts on Friday implies one day away from work. See Appendix Table A10
16In practice, the insurance office screens claims and audit that workers are resting, e.g., are at home during

working hours—over the duration of the leave.
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specific action that workers take to extend their absences. The term φq 1{weekend} captures the
extra utility that a worker derives when the sick leave claim allows her to not return to work until
after the weekend. The indicator variable 1{weekend} equals one for each sick leave claim that
ends on a Friday.

Workers choose sick pay utilization by trading off the cost of a day away from work w(1 −
B′(sc)) with its net gain. This net gain depends on the day of the week and the duration of the
claim. An additional day on leave beyond the worker’s sickness level (i) lowers utility by increas-
ing the compliance cost term in φf ′(s − θ), (ii) increases utility in φ if sl increases by a unit, i.e., if
s′l(s) = 1, and (iii) increases utility in q if the sick leave claim ends on a Friday. Thus, the net gain
of time away from work is given by the term φ [s′l − f ′(s− θ) + q1{weekend}]. The optimal sick
pay utilization is s∗(φ,f,w,B,θ,dow) = argmaxu(s;φ,f,w,B,θ,dow).

Moral Hazard. Insurance provision lowers the marginal cost of sick leave—by lowering the cost
of a day away from work—weakly increasing sick pay utilization. That is, s∗(·) is nondecreasing
in the sick leave benefits function B(s). Moral hazard refers to the responsiveness of the sick
leave demand to varying the generosity of sick pay. The magnitude of this response depends
on workers’ valuation of time off (φ), their preferences for behaving as expected (summarized
by the parameters of function f ), their wages (w), and generosity of the paid sick leave contract
summarized by the function B.

Formally, consider two alternative sick pay contracts B0 and B1. The contracts may specify
different replacement rates given a particular piece-wise linear function or may differ in the shape
of the function itself. For example, both contracts could feature a three-day-long deductible but
differ in the marginal replacement rate for claims longer than three days. Alternatively, contract
B0 could have a three-days-long deductible, and contract B1 could have a constant replacement
rate. Moral hazard is the change in the demand for sick leave (∆s) when the worker is shifted
from contract B0 to contract B1:

∆s = s∗(φ,f,w,B1,θ,dow)− s∗(φ,f,w,B0,θ,dow) . (2)

This definition follows the conventional use of the term moral hazard in the healthcare liter-
ature.17 In this literature, the term captures the notion that insurance coverage, by lowering the
marginal cost of care to the individual, may increase healthcare use. Put another way, moral haz-
ard refers to the responsiveness of consumer demand for healthcare to the price consumers pay for
it. In the context of paid sick leave contracts, workers (consumers) demand time off (healthcare)
by considering the share of wages that is forgone with an absence (price). Thus, moral hazard

17See Pauly, 1968; Cutler and Zeckhauser, 2000; Einav et al., 2013; Einav and Finkelstein, 2018
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refers to the responsiveness of workers to the replacement rate. The literature on paid sick leave
refers to this responsiveness as moral hazard as well (see Johansson and Palme, 2005 and Ziebarth
and Karlsson, 2010).18

Optimal utilization under linear contracts and quadratic penalties. To facilitate intuition, I impose the
following functional form assumptions: (i) a linear benefit scheme B(s) = bs, where b ∈ [0,1], (ii)
a quadratic compliance cost function, and (iii) q = 0—i.e., utility does not vary with the day of the
week. Following this parametrization, the utility function is:

u(s;φ,κ,w,b,θ) = w(M − s) + wbs+ φ(s− θ)− φ 1

2κ
(s− θ)2 × 1{(s− θ) > 0}.

Thus, the optimal choice of sick leave duration from the worker’s perspective, conditional on
s > θ, is:

s∗(φ,κ,w,b,θ) = θ + κ

(
1− w

φ
(1− b)

)
.

In the case of full coverage (b = 1), the worker optimally chooses s∗ = θ + κ. This case is
presented in Panel (a) of Figure A1; for strictly positive values of κ, sick pay utilization is above the
worker’s health state. Lower compliance costs (higher κ) are associated with greater deviations
from the worker’s health status. The nonpaid sick leave contract (b = 0) is presented in Panel (b)
of Figure A1. If the worker’s valuation of time outside work φ is greater than the wage rate, the
worker would optimally choose to claim longer sick leaves.

Panels (c) and (d) of Figure A1 consider the case of partial coverage—i.e., a replacement rate
b ∈ (0,1)—for different values of κ and φ.19 All else equal, a greater valuation of time outside work
(a higher φ) is associated with a longer sick leave claim. Similarly, lower compliance costs (higher
κ) are associated with longer sick leave claims. That is, moral hazard is increasing in the valua-
tion of time outside work and decreasing in compliance costs. Additionally, given the worker’s
preferences, the previous expression shows that the duration of a sick leave claim is increasing in
the replacement rate b.

Scope of the model of workers’ behavior. The propose model of workers’ behavior aims to illustrate
how illness affects the absence behavior of employed individuals and makes some simplifying

18This definition of moral hazard refers to “ex post moral hazard”; i.e., how workers respond to the generosity of
sick pay. It abstracts from “ex ante moral hazard”; i.e., actions that workers can take to prevent deterioration of their
health. Understanding how these actions are shaped by the generosity of the sick leave system is above the scope of
this paper.

19In this case, workers care about the effective valuation of time, i.e., w(1−b)
φ .
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assumptions to keep the model tractable. The model abstracts from the behavior of “when” to
file a sick leave claim. Incorporating a filing-day choice in the model would require assumptions
on the lag between the day a worker falls sick and when she files a claim as well as data on these
events. I assume that workers claim on the day when they fall sick. Nonetheless, the model allows
for strategic behavior in the duration margin of a sick leave claim, including not filing behavior.

The model also abstracts from the interaction between workers and physicians. In reality,
physicians write sick leave claims with (partial) information about workers’ health. The main im-
plication of not modeling this interaction is that the compliance cost function does not disentangle
workers’ and physicians’ risks and costs. For example, suppose physicians want to avoid facing
the cost of being caught signing off an excessively long claim. In that case, compliance costs will
be higher, and the duration of sick leave would closely reflect workers’ health state.20

Expected utility. Ex ante, the worker aims to maximize her expected utility, taken over the distri-
bution of health shocks G(θ,dow). I assume that the worker is risk averse with a von Neumann–
Morgenstern (vNM) utility function of the constant relative risk aversion (CRRA) type: v(y) =

y1−γ/(1− γ), where y corresponds to the realized utility u∗(θ, dow). Thus, expected utility is given
by

U = E [v(u∗(θ,dow))] =

∫
v(u∗(θ,dow)) dG(θ,dow) . (3)

This utility maximization problem can be viewed as a two-stage problem (Einav et al., 2013).
Once the health shock is realized, the uncertainty is resolved, and workers aim to maximize the
contribution of the state utility u∗(θ, dow) to their expected utility Eθ,dow [v(u∗(θ,dow))] by optimally
choosing the duration of a claim s.21 Put another way, given the health shock, risk preferences be-
come irrelevant. That is, risk aversion does not affect workers’ decision over sick pay utilization,
and all else equal, variation in the utilization of paid leave across workers reflects variation in their
preference parameters (φ, f and q).

For the rest of the section, it is helpful to consider an economy populated by I workers and let
i index workers. Thus, si∗(φi,f i,wi,B,θi,dowi) represents the optimal sick pay utilization choice of
worker i when insured under contract B, and U i(θi, dowi) represents her expected utility.

20Physicians are subject to screenings and penalties for fraudulent sick leave prescriptions. Policies aiming to
correct physician behavior would use instruments not included in my model, e.g., the mentioned penalties. This
paper focuses on the level of generosity of the system and the trade-off between risk protection and workers moral
hazard responses.

21In this model, the only source of uncertainty the worker faces is over her health status, which is the risk the
planner seeks to insure.
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II.B Production

Changes in the generosity of sick pay induce two costs: (i) the cost of moral hazard that accrues
to the insurer, and (ii) by changing labor supply, sick leave insurance affects production. In this
section, I propose a stylized version of a model of a firm to capture the production losses (or gains)
of changes in the sick pay policy.

Sickness is detrimental to production for two reasons. First, sickness might impair individuals’
ability to perform their work, i.e., a worker is less productive when sick. Second, if a worker
is contagious and infects her coworkers, further production losses could arise: either by direct
absences or by reducing other workers’ productivity.

Let ν represent the worker’s productivity on a day she is sick. I assume that ν also incorporates
any potentially negative effects on coworkers. Thus, ν ∈ (− inf ,1]. If ν = 1, the worker is equally
productive when healthy and sick and is not contagious, and any value of ν below one implies a
productivity loss from sickness.

The firm pays worker i a daily wagewi independent of her realized health-related productivity.
I assume that the firm does not observe workers’ health state. Thus, the posted wage does not
depend on it. This assumption is consistent with an information asymmetry between the firm
and the worker—the worker knows her health state but the firm cannot observe it—and with
contracting frictions—even if the firm could observe workers’ health, it might not be able to offer
a contract that induces worker to report their health state.

Given the wage rate, labor costs are a function of total days worked by each individual. On the
other hand, revenue is a function of days worked and the worker’s health state. Let dhealthy denote
the number of healthy days worked, and let disick the number of days that i works sick. These are
a function of the optimal sick pay utilization si∗. Using these definitions, the profits generated by
worker i are:

πi(si∗) = g(dhealthy(s
i∗) + νdsick(s

i∗))− wi(dhealthy(si∗) + dsick(s
i∗)) , (4)

where the price of the good is normalized to one. The production function g(·) exhibits diminish-
ing returns on effective days worked. Total profits equal the sum of individual workers’ profit:
Π =

∑I
i=1 π

i(si∗).

II.C Social Planner

In this section, I derive the optimal sick pay contract. A maintained assumption in this paper is
that the planner offers one contract and only observes the duration of sick leave claims. Thus, the
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replacement rates could depend only on this object.22

To facilitate intuition, I start with a stylized version of the model to illustrate the main trade-off
the planner faces when designing the optimal policy. Then, I relax these assumptions and present
the full-fledged model of insurance provision.

II.C.1 The textbook case

Consider two simplifying assumptions: (i) the planner offers a linear contract, i.e., B(s) = bs, and
(ii) workers are risk-neutral. The first assumption allows us to focus on one policy parameter: the
replacement rate level b. The second assumption allows us to ignore the value of risk protection
and focus on the role of moral hazard responses in the design of sick pay.

Worker i chooses her sick pay utilization by comparing the cost of an absence ((1− b)wi) with
the net gain from an extra day off (uis). The former depends on the wage rate wi and the replace-
ment rate b. The marginal utility of an extra day off depends on the health shock and workers’
preferences as derived in the previous section:

uis = φi
[
∂sil
∂si
− ∂f i(si − θi)

∂si
+ qi1{weekend}

]
.

Thus, when uis ≤ wi(1− b), the individual chooses to go to work, else she takes a day off.

No externalities. Assume that sickness does not affect workers’ productivity. That is, worker i is
(i) equally productive when healthy and when sick, and (ii) sickness is not contagious. In equi-
librium, the firm is willing to pay worker i her marginal product. Thus wi equals the marginal
productivity νi.23 Given this wage rate, worker i efficiently self-selects into working or not work-
ing depending on the marginal utility of a day off uis.

Panel (a) of Figure 1 shows graphically the effect of sick pay provision on workers’ choices
and welfare. This figure puts together the worker and the firm problems. The vertical axis shows
the marginal utility of a day off (uis) and worker’s marginal productivity νi. The horizontal axis
corresponds to the daily wage rate wi. Thus, at the 45◦ line, wages equal marginal productivity
wi = νi for different productivity levels. Additionally, at the 45◦ line, the marginal utility of an
extra day off equals its cost—the forgone wage. Thus, absent of sick pay, workers efficiently sort
into working (uis ≤ wi) and not working (uis > wi).

22Understanding whether it would be optimal to offer more than one contract is beyond the scope of this paper.
From a theoretical standpoint, the key condition determining whether the optimal menu features vertical choice is
whether consumers with higher willingness to pay have a higher efficient level of coverage (see Marone and Sabety,
2022). In practice, almost all paid sick leave systems feature one contract, see Table 1.

23To keep the exposition as simple as possible, I let ν represent the marginal productivity when sick. This is
equivalent to assuming that g′(s) = 1 in section II.B.
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The provision of sick pay distorts workers’ incentives by lowering the cost of absences and in-
duces some individuals to take a day off. The blue shaded area represents inefficient absenteeism.24

It comprises the pool of individuals with marginal utility for time off below their marginal prod-
uct (νi) that takes a day off induced by sick pay provision.

Inefficient absenteeism: uis ≥ wi(1− b)︸ ︷︷ ︸
Worker’s trade-off

do not work

and uis ≤ wi︸ ︷︷ ︸
Optimal employment

work

(5)

If the replacement rate increases from b to b′, more workers are induced to call in sick. This
is the traditional moral hazard response: an increase in the replacement rate increases inefficient
absenteeism, i.e., workers’ behavioral responses reduce welfare.

Production externalities. Let us consider the more interesting case where sickness affects work-
ers’ productivity. Note that workers’ decisions remain the same: given the wage rate wi, worker i
chooses to go to work if uis ≤ wi(1− b). Nonetheless, when sickness is detrimental to productivity,
wages no longer reflect the marginal product when sick.

The firm pays worker i a daily wage wi independent of her health-related productivity. From a
welfare standpoint, optimal employment trades off the productivity from working sick νi—which
incorporates any potential adverse effect of worker i on her coworkers—against the value of
leisure uis. That is, it would be efficient that workers who value time off more than their pro-
ductivity do not work when sick.

Panel (b) of Figure 1 provides a graphical illustration. I define four regions based on the re-
lation between wages, productivity, and the marginal value of a day off. The wage rate wi is
presented in the horizontal axis, and the value of a day off uis in the vertical axis. As in Panel (a),
at the 45◦ line, the marginal utility of an extra day off equals its (private) cost, i.e., the wage rate.
In contrast with the previous case, in this figure, I consider one level of productivity νi given by
the horizontal line labeled health-related productivity. This emphasizes that wages (horizontal
axis) do not vary with the health-related productivity level ν.25

First, consider the top left area of Panel (b). I refer to this pool of workers as involved in efficient
absenteeism. This is the pool of individuals who do not work and for whom this is efficient, given

24This terminology is close to the one proposed by Pichler and Ziebarth (2017).
25Appendix Figure A2 presents each relevant trade-off separately in the absence of insurance provision.
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their productivity:

Efficient absenteeism: uis ≥ wi(1− b)︸ ︷︷ ︸
Worker’s trade-off

do not work

and uis ≥ νi︸ ︷︷ ︸
Optimal employment

do not work

(6)

The bottom right area shows the efficient presenteeism case: a pool of individuals who do work
(uis ≤ wi(1− b)) and for whom this is the efficient response (uis ≤ νi).

The two darker areas show inefficient absenteeism and inefficient presenteeism. These are the
situations where the workers’ choices do not coincide with what the planner would find optimal
in terms of employment. Inefficient absenteeism was first described in Panel (a). It refers to
the pool of workers who find it optimal to be absent when it would be efficient that they work.
Inefficient presenteeism, on the other hand, refers to the situation where workers’ value of time
off is below the cost of the absence, so they work. However, that valuation is below their marginal
productivity when sick:

Inefficient presenteeism: uis ≤ wi(1− b)︸ ︷︷ ︸
Worker’s trade-off

work

and uis ≤ νi︸ ︷︷ ︸
Optimal employment

do not work

(7)

What is the effect of an increase in the replacement rate? Consider the case where b increases to
b′; this shifts the slope of the effective wage function wi(1−b′). The welfare effects of moral hazard
responses has two components. On the one hand, a higher replacement rate induces absences
from workers with a relatively low value of time off; it increases inefficient absenteeism. This is
the same response as in the no externalities case. On the other hand, a higher replacement rate
reduces inefficient presenteeism: workers with relatively low productivity take time off.

This exercise illustrates the main differences between the design of sick pay insurance and
other health-related insurance programs (e.g., healthcare insurance, disability insurance). The
presence of production externalities changes the welfare effect of moral hazard. A higher replace-
ment rate induces workers who would take up “too little” sick pay to take time off efficiently.
Thus, workers’ behavioral responses can be welfare improving and they do not necessarily make
insurance provision more expensive.

II.C.2 The full-fledged model

In this section, I relax some important simplifying assumptions imposed in the textbook case.
First, I consider that the benefit function is piece-wise linear (B(s)). Second, I assume that workers
are risk averse. Risk-averse individuals gain utility from insurance, because it lowers the uncer-
tainty they face. Thus, the optimal design needs to incorporate the value of insurance provision.
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Aggregate welfare can be written as follows:

W (B(s)) =
I∑
i

ωiU i(B(s); θi, dowi),

where ωi represents the Pareto weight assigned to worker i and U i represents her expected utility.
To incorporate the production side to the welfare maximization problem, I assume that every
worker i obtains the same share of total profits π = Π

N
. Thus, workers’ expected utility is given

by: U i(B(s); θi, dowi) = Eθ,dow [v(u∗(θ,dow) + π)].
The social planner chooses B(s) to maximize the sum of individual welfare:

max
B(s)

W (B(s)) =
I∑
i

ωiU i(B(s); θi, dowi) s.t.
I∑
i

si∗B(s) ≤ S , (8)

where S represents the allocated funds to cover the cost of the sick pay system. This constraint
allows comparisons across policies that have the same cost. It is not feasible to solve this problem
without restricting attention to a sub-set of the universe of piece-wise linear functions B(s). The
set of contracts that I consider are the ones characterized by the following transfer function:

B(s) = b1 s for s ∈ [1, s]

= b2 (s− s) for s ∈ (s, s̄]

= b3 s for s > s̄.

This function features a deductible of s days. Absent moral hazard, the optimal sick leave contract
would be one featuring full coverage for any duration, i.e., Bs = b ∀ s. It would be socially
optimal for all workers to be fully insured against health risks since their leave duration would
equal their health state. In the presence of moral hazard, the optimal contract features some level
of incompleteness of coverage to deter unjustified leave taking and minimize the production cost
associated with unjustified absences. I empirically derive such contract. To do so, I rely on (i)
estimates of workers preferences, which allows me to quantify the value of risk protection and
the cost of behavioral responses; (ii) estimates of the underlying distribution of health; and (iii)
estimates of the production costs associated with sick pay provision. I discuss how I estimate
these objects in the next sections.
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III Background and Data

In this section, I discuss the Chilean healthcare and sickness insurance systems, focusing on the
institutional features relevant to my analysis. I then present the data and patterns in the data that
motivate my modeling choices.

III.A The Chilean Health Insurance System

In Chile, healthcare insurance providers serve two functions: (i) to offer healthcare insurance
contracts and (ii) to administer the paid sick leave system. The healthcare insurance system is
composed of a government-run healthcare insurance provider and a handful of private insurers.26

Workers are mandated to purchase health insurance, allocating at least 7% of their salary to a
healthcare plan offered by an insurer of their choice.

The government-run healthcare insurance provider offers four plans, whose eligibility is based
on monthly salary and household composition. The lowest-tier plan provides coverage for in-
dividuals with no income at no cost in public system hospitals. As income increases, workers
qualify for a higher-tier plan. This plan provides healthcare coverage in public system hospitals
with low copays and access to private healthcare institutions with high copays.27 Private insur-
ance companies, on the other hand, provide tiered plans with financially vertically differentiated
coverage levels—similar to the Gold, Silver, and Bronze plans offered by Affordable Care Act ex-
changes in the US. The plans offered by private insurance companies allow beneficiaries to obtain
healthcare from private healthcare institutions, which provide a higher quality of care than public
institutions.

The mandatory contribution would allow workers to enrolled in a plan offered by the government-
run healthcare insurance with no need to make voluntary contributions.28 To select one of the
private providers, workers might need to contribute a higher proportion of their salary to qualify
for the healthcare plan of their choice.29

In 2017, 73% of workers enrolled in plans offered by the government-run healthcare insurance
system; the remaining 27% enrolled in plans offered by one of the private providers (see Panel A

26These are called FONASA and ISAPRES, respectively, for their names in Spanish (Fondo Nacional de Salud and
Instituciones de Salud Previsional).

27Plans are indexed by letters, where A is the lowest-tier plan and D the highest-tier plan. The highest-tier plan
has a 20% copay in public system hospitals and vouchers to use healthcare providers who participate in the plan’s
network at a discounted price.

28Workers would be enrolled in one of the four plans based on their monthly salary and household composition.
For example, a single worker who earns USD$693 a month—the median salary in 2017—and chooses the government-
run insurance system will be enrolled in the highest-tier plan and cannot choose any of the lower-tier plans with lower
copays.

29Plans offered by private insurers are highly regulated. These insurers can set prices based on observable charac-
teristics—including age and (until April 2020) sex—and risk factors.
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of Table A1). Workers enrolled in the government-run plans have observable characteristics that
would predict that they are more costly to insure: they are older, more likely to be women, and
have lower salaries.

The second function of healthcare insurance providers is to administer the paid sick leave sys-
tem. Insurers are in charge of receiving and screening sick leave claims and disbursing sick leave
benefits. Insurers cannot design sick pay plans and must follow the rules set by the central gov-
ernment regarding eligibility criteria and benefits. Nonetheless, there are differences in how each
provider applies these rules in practice. For example, panel B of Table A1 shows that the rejec-
tion rate by private insurers is almost three times that of the government-run insurer. I argue
that these differences in leniency are suggestive evidence that private insurers might have differ-
ent motives—such as minimizing sick leave payments—when screening sick leave claims. My
empirical analysis focuses sick pay utilization of workers enrolled in the government-run health
insurance system—they represent about 73% of all Chilean workers. The main reason for this
choice is that this paper focuses on the provision of paid sick leave as a social insurance system,
which is closer to the behavior of the government-run healthcare provider.

III.B The Chilean Paid Sick Leave System

The Chilean paid sick leave system gives employees the right to call in sick and receive sick pay
due to short-term, non–work-related sickness—e.g., the common flu or back pain.30 Workers can
use sick leave to meet their own health needs but not to care for family members. The eligibility
criteria for claiming paid sick leave requires that workers (i) have been enrolled in the social
security system for six months and (ii) have made contributions to the health insurance system
for three months. The paid sick leave system is financed through these mandatory contributions.
That is, the 7% of workers salary that is contributed towards the healthcare system. Between 2015
and 2019, the paid sick leave portion of the system was financed with 2.6% of the contributions
(see table A1).

Upon falling sick, workers must obtain a physician’s certification of their sickness stating the
primary diagnosis and the number of days that the physician considers the worker will need to
recover from the disease. This certificate is necessary to justify the absence from work and must
be requested regardless of the duration of the sick leave claim. This certificate is reviewed by an
insurance office, which decides whether the sick leave claim is (i) approved with no changes, (ii)
approved with a reduction in its length, or (iii) denied.

30The sickness insurance system aims to provide risk protection from impairments to working ability that are
temporary and from which full recovery is foreseeable. A separate program provides disability insurance to workers
in case of permanent impairments to working ability.
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Sick leave payments are a function of sick leave duration subject to a maximum salary.31 For
workers with a salary below the maximum, benefits are computed as follows: The benefit scheme
exhibits a nonpayable period of 3 days; i.e., the replacement rate for the first three days of a sick
leave spell is zero.32 This nonpayable period works like a deductible that resets for every new
sick leave span.33 Starting on the fourth day, there is full coverage of each additional missed
day—i.e., the replacement rate is one. If the sick leave lasts 11 days or more, the nonpayable
period is reimbursed. That is, claims with an 11-day or longer duration are fully covered.34 Panel
(a) of Figure 2 presents days paid as a function of days on leave for claims of different duration.
Reimbursement of the nonpayable period after 11 days implies that the average replacement rate
jumps discretely at 11 days, and it is nonconstant (see Panel (b) of Figure 2).

Chile constitutes an ideal setting to study the design of optimal sick pay systems for several
reasons. First, its paid sick leave system is comprehensive, covers all workers, and features only
one plan designed by the central government. This implies that workers do not choose their
sick leave plan and alleviates adverse selection concerns. If workers could choose their sick pay
coverage, we could expect sicker individuals to choose plans offering more generous insurance
coverage. While this mechanism could be at play in the choice of healthcare insurance provider,
conditional on this decision, sicker and healthier individuals face the same sick pay coverage.

The design of the Chilean system is similar to many European paid sick leave systems that use
resettable deductibles. Table 1 compares the design on 22 countries. Twelve of the systems are
“bracket systems”. These are characterized by (i) a first bracket with a low or zero replacement
rate and (ii) two or three brackets with a higher replacement rates. Specifically, in 9 of these 12
countries the replacement rate for the first days is zero.

The second advantage of this setting is that Chile has greatly detailed administrative data
which I describe in the next section.

III.C Data

I exploit unique administrative data on sick leave claims matched to enrollment data for workers
insured by the government-run healthcare system. These restricted-access data were provided
directly by the government-run healthcare insurance office and cover the period 2015–2019.

31In my sample, less than 1% of workers earn above this threshold; see Figure A3. I exclude these workers from
the analysis.

32Cid (2006) documents that the origin of the 3-day nonpayable period dates to a regulation implemented in 1952
that aimed to prevent abusive behavior, which has not been revised since.

33These resettable deductibles are similar to those used in automobile or homeowners insurance: Separate de-
ductibles apply to each loss.

34If a worker files two (or more) consecutive claims, they are treated as one claim for the computation of benefits.
To be consistent, I treat these claims as one in the analysis. Appendix Table A3 presents counts and summary statistics
of sick leave claims and sick leave spells.
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The enrollment dataset covers the universe of individuals enrolled in government-run health-
care insurance regardless of whether they have filed a sick leave claim. I observe individuals’
demographic and economic characteristics: sex, age, annual earnings, and health indicators for
chronic conditions.35 Additionally, I observe individuals’ residence postal codes and the health
insurance plan assigned to them. The latter allows me to exclude individuals enrolled in the
lowest-tier plan from the analysis, as these individuals are not active in the labor market.

In the claim dataset, I observe detailed information about each sick leave claim: start and
end dates, prescribed days on leave, primary diagnosis (coded following the ICD-10), physician
identifiers, and amount received for paid sick leave. I also observe the occupation in which the
worker is employed at the moment of filling the sick leave claim.

I combine these data with medical assessments from the Peruvian Handbook of Recovery
Times. I rely on these assessments to construct the underlying distribution of health; this is a
key input in characterizing workers responses and in the estimation of the model. The Peru-
vian Handbook of Recovery Times (EsSalud, 2014) specifies the average recovery times for 2,763
unique disease codes at the ICD-10 four-digit level. Crucially, these recommendations are ad-
justed based on workers’ sex, age, and occupation. Table A2 provides an example of the average
recovery times for three common diagnoses—lumbago with sciatica, common cold, and infec-
tious gastroenteritis—and the correction factors proposed by the handbook. The main advantage
of exploiting this external source of data is that it provides an objective measure of recovery times
constructed outside the structure of the Chilean system. That is, it is not affected by the brackets
used in the paid sick leave benefit function.

Based on these three sources, I construct a claim-level dataset with detailed information on
workers’ demographic characteristics and leave-taking behavior and the average recovery time.
My primary measure of leave-taking behavior is the duration of a sick leave claim filed on a
given day of the week. I assign a benchmark recovery time to each sick leave claim exploiting the
disease code and the suggestions of the Peruvian Handbook of Recovery Times. I construct these
measures at the sick leave spell level; i.e., I consider consecutive claims as one claim. Thus, the
unit of analysis is the same as the one used to compute sick leave benefits. Appendix Table A3
presents counts and summary statistics of sick leave claims and spells.

To construct the analysis sample, I impose two restrictions. First, the estimation sample in-
cludes claims from private-sector male workers aged 25 to 64. This is a demographic group with
high labor market participation rates. Although women’s sick leave–taking behavior is of high
interest for the design of sick leave programs, women have much lower participation rates than

35These conditions are cerebral vascular accident, Alzheimer’s, juvenile arthritis, rheumatoid arthritis, bronchial
asthma, lung cancer, diabetes, chronic obstructive pulmonary disease, chronic kidney disease, arterial hypertension,
acute myocardial infarction, leukemia, lymphoma, multiple myeloma, and HIV.
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men. For example, in Chile, women’s labor force participation rates are more than 20 percent-
age points lower—52.6% for women at the beginning of the sample period and 73.2% for men.
Thus, a model of sick leave–taking behavior that explains women’s choices would also require
incorporating their decision to participate in the labor market. Abstracting from the participation
decision simplifies the model estimation.

Second, the estimation sample includes claims associated with a subset of diseases. I exclude
mental-health diagnoses because their filing process is more cumbersome than the one for non–
mental health claims.36 That is, in this paper, I focus on non–mental health sick leave claims.
Among non–mental health diagnoses, I exclude diagnoses for which it is hard to assign a recov-
ery time. For example, I exclude claims with codes corresponding to neoplasms. Table A4 lists the
conditions included in the analysis and the share of claims recorded under each diagnosis. Ap-
pendix B. provides additional details. The final sample includes 90.19% of all non–mental health
sick leave claims.

III.D Descriptive Evidence

Summary statistics. Table 2 presents summary statistics for all the workers in the sample and
for those who used sick pay during 2017. I split the last group based on the type of disease and
duration of the sick leave claim. Almost 20% of Chilean workers filed a non–mental health-related
sick leave claim in 2017. The average worker in the sample is 44 years old, and the average worker
who used sick pay is approximately the same age (column 1 vs. column 2). Nonetheless, the
average claimant has a higher salary than the average worker, and this difference is statistically
and economically significant.

To better clarify the differences between workers who filed sick leave claims and those who
did not, Table 3 presents characteristics of workers who used sick leave benefits based on the
duration of their claims. I group workers who filed (i) at least one claim with a duration of up
to 3 days, (ii) at least one claim with a duration of between 4 and 10 days, and (iii) at least one
claim with a duration of 11 days or longer. Shorter sick leave claims are associated with younger
workers with higher average wages, who are also less likely to have chronic conditions. This
pattern is compatible with the 3-day waiting period, reducing the likelihood that lower-earning
workers file a sick leave claim. Additionally, the association between workers’ age and prevalence
of chronic conditions is consistent with older workers experiencing more severe conditions than
their younger counterparts.

Sick leave duration. Figure 3 shows the distribution of sick leave claims of up to 29 days. Two

36For example, these claims must be certified by a psychiatrist and require a comprehensive medical assessment
at the time of filing.
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main patterns characterize the distribution of days on leave. First, approximately 26.54% of sick
leave claims have a duration of up to 3 days. This provides evidence that workers are completing
the filling process to justify their absences even when not paid for them. Sick leave claims lasting
between 4 and 10 days account for 41.06% of claims. Thus, 32.40% of claims have a duration
between 11 and 29 days.37

Second, some durations accumulate more mass than others. For example, three days on leave
is the most common duration representing 15.54% of claims, follow by five and seven days (ac-
counting for 13.56% and 13.64%, respectively). This pattern could be explained by the underlying
distribution of recovery times or behavioral responses to the incentives provided by the sick leave
benefit scheme; disentangling these is one of the papers’ aims.

Figure 4 compares the underlying distribution of recovery times with the observed distribu-
tion of days on leave. It shows that three rest days are the most recommended recovery time,
consistent with 3-days-long sick leave claims being the most frequent duration. In contrast, there
is a broader gap when comparing the share of claims with five and seven days as suggested re-
covery time and the observed claims of such duration. This pattern is consistent with physicians
being more likely to write recovery times that correspond to a workweek—five days—or a calen-
dar week and multiples of these. Panel (b) of Figure 4 shows the ratio of the difference between
the share of sick leave claims for a given duration and the share implied by the underlying distri-
bution to the latter. This figure illustrates that the greater gaps are at 5, 7, and 11 days.

Finally, the excess of mass or bunching at 11 days coincides with the most significant jump
in the average replacement rate: starting at 11-day-long claims, workers are fully reimbursed for
the time off. This jump incentivizes workers to extend their leaves to enter the “full” insurance
region. Panel (b) of Figure 4 shows missing mass in durations just below the eleven-day jump:
eight, nine, and ten days. I estimate that 11-day-long sick leave claims are 4.55 percentage points
more likely than what the underlying distribution of health predicts. I interpret these patterns as
suggestive evidence that workers respond to the discontinuity in the replacement rate at 11 days.38

Sick leave duration by workers’ characteristics. Figure A5 shows the histogram of sick leave
claim duration by worker characteristics. I group workers into eight groups or bins defined based
on age and occupation type: blue-collar and white-collar occupations.39 Conditional on worker

37Claims filed for 30 days are used either by workers with illness requiring a longer recovery or those transitioning
to disability insurance. I do not have access to data that would allow me to differentiate between these outcomes.
Thus, my analysis focus on claims of up to 29 days. This restriction approximates the universe of workers that suffer
conditions with foreseeable recovery.

38Missing mass at eight, nine, and ten days could also be explained by the rounding at seven days. In the model,
I allow for a rounding process that rounds up (down) sick leave claims with durations in three days neighbor.

39A blue-collar worker refers to an individual who performs manual labor. For example, operators, assemblers,
and laborers are considered blue-collar workers. A white-collar worker refers to an individual who performs pro-
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occupation, older workers require a higher proportion of long sick leave claims. Their distribution
of sick leave claims is shifted toward the right relative to the distribution for younger workers
(comparing across rows in Figure A5). This pattern is consistent with workers requiring more
time to recover from the same conditions as they age and with older workers suffering more
severe underlying conditions.

Comparisons across occupations for workers in the same age group indicate that claims made
by blue-collar workers are longer on average, with a smaller share of claims of up to 3 days. This
comparison suggests that differences in the underlying distribution of health could be correlated
with occupation type. Motivated by these results, I allow the underlying distribution of health to
vary with workers’ age and occupation in the estimation of the model.

Workers’ behavior by day of the week. Incentives to take time off vary with the day of the
week when a worker falls sick. For example, the incentives to file a two-day-long sick leave claim
on a Thursday differ from the incentives to file a two-day-long claim on a Tuesday. The first
combination implies four continuous days on leave while the second combination implies two
days. I refer to the first case as a “weekend-streak combination”.

Figure 5 shows the share of sick leave claims filed on each day of the week. For each day of
the week, I compute the share of sick leave claims, indexed by j, of duration s that are filed that
day day . That is:

sharedays =

∑
j 1{dowj = day, sj = s}∑

j 1{dowj = day}
.

Consider 1-day-long sick leave claims: the share of claims filed on Friday is about three times
higher than the share of claims filed on any other day of the week (see Panel (a) of Figure 5).
Similarly, two-days long claims are more likely to be filed on a Thursday than any other day of
the week.40 This pattern is present for one- to five-day-long claims. Crucially, when inspecting
7-day-long claims, the share is constant across days of the week.41 I document that workers are
12% more likely to file a weekend-streak claim than a claim of comparable duration on any other
day of the week. To capture this empirical regularity, the model allows workers’ behavior to vary
with the day of the week of a sick leave claim.

fessional, desk, managerial or administrative work. For example, sales representatives are considered white-collar
workers. Table A6 details the occupations classified as blue-collar and white-collar.

40In the data, less than 6% of sick leave claims are filed on weekends. Thus, in the rest of the paper I focus on
claims filed between Monday and Friday.

41Claims of durations longer than six days exhibit a similar pattern. I use seven days as a reference point since
the share of these claims in the data is greater than the share of 6-day-long claims. Appendix Figure A4 presents the
distribution of the share of sick leave claims by day of the week for claims with a duration of between 8 and 15 days,
pooled in 2-day groups.
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IV Model Estimation and Identification Discussion

In this section I start discussing the parametric assumptions and the procedure that I follow to
estimate the model of workers’ behavior. Then I present heuristic arguments for the variation I
use to identify each one of the parameters of workers’ preferences.

IV.A Model Estimation: Workers’ Behavior

I represent the theoretical model fully in terms of parameters to estimate. I assume the following
utility function:

u(si;φi,κi,wi,B,θi,αi) =wi(M − si) + wiB(si) + φi(sil(s
i; dowi)− θi) + φiq 1{weekend}

− φi
[
κi0(si − θi)2

1{si − θi > 0}+
3∑
j=1

κj1{si − θi = j}
]
,

where i indexes workers. The compliance cost function takes a flexible functional form: it allows
for quadratic penalties and specific costs of deviating one, two, or three days. Additionally, I
assume that the transfer function is captured by a piece-wise linear function with day brackets
corresponding to those currently implemented in the Chilean system.

Preference parameters. The preference parameter φi governs the valuation of time outside work.
I assume that ln(φi) is drawn from a normal distribution with mean µφ and variance σ2

φ such that

ln(φi) ∼ N(µφ,σ
2
φ) .

Heterogeneity in the valuation of time outside work reflects variation in the opportunity costs of
missing work to recover from a disease or in tastes for leisure relative to consumption. The term
φq captures the extra utility that a worker derives when the sick leave claim has a weekend-streak
duration. I assume that all of the variation in this term is governed by the parameter φ; thus, q
does not vary across workers and is constant across sick leave duration. That is, the value of a
weekend streak combination varies across workers reflecting their valuation of time off.

Variation in the compliance cost parameter κ0 reflects variation in workers’ preferences over
behaving as expected or revealing their “true” health status. Additionally, job characteristics can
justify variation in κ0. For example, if a coworker can easily perform a worker’s job, workers
might face high compliance costs and ask for time outside work that closely follows their health
status. Alternatively, high risks of extending a sick leave claim above ones’ health would be cap-
tured by a high compliance cost. I capture both of these mechanisms in a reduced-form manner. I
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assume that ln(κi0) follows a normal distribution with mean and variance µκ0 and σ2
κ0

:

ln(κi0) ∼ N(µκ0 ,σ
2
κ0

) .

I interpret κ1, κ2, and κ3 as shifters of the compliance cost of deviating for one, two, and three
days, respectively. For example, the value of the compliance cost function for an extra day off is:
f i1 = f i(si = θi + 1; θi) = κi0 + κ1. Thus, heterogeneity in κ0 implies that the cost of deviating for
one day varies across individuals—a similar argument applies for two- and three-day-long devia-
tions. Nonetheless, this specification assumes that workers with high (low) compliance costs face
a high (low) cost of deviating for one, two, three, four, or any number of days.

Distribution of health states (θ, dow). Worker i draws a health shock (θi,dowi) from the distribu-
tionG(θi,dowi) = P (θi = m, dowi = day|X). The vectorX is a vector of observable characteristics:
age and occupation.

I use the Peruvian Handbook of Recovery Times to assign the average number of days that
a worker would need to recover from the condition reported in the sick leave claim data, i.e., θi.
I use these average days as an input to construct the underlying distribution of health G(θi), as
discussed in Section III. This approach allows me to construct an underlying distribution of health
without imposing parametric assumptions.

I observe the day when a sick leave claim is filed from the data. When estimating the model, I
assume that workers fall sick on the day that they start a recovery spell, i.e., dowi is the first day
of the sick leave claim filed by worker i. Relaxing this assumption would require an additional
source of data that distinguishes between the day that a worker falls sick and the day that she
starts an absence spell or files a sick leave claim. Absent such data, I use the starting day of a
recovery span as the day when the worker falls sick. I assume that workers file sick leave claims
from Monday to Friday and that their work schedule is precisely Monday to Friday. In the data,
less than 6% of sick leave claims are filed on weekends. Additionally, 83% of Chilean workers
have a regular work schedule (Aguayo Ormeño, 2019).

Heterogeneity in health states. The model of workers’ behavior allows for heterogeneity in how
workers suffer a health shock. To see this, let the parameter α reflect how sickness affects a worker:
workers with a higher α benefit more from time outside work. Consider two workers such that
worker a is more affected by the symptoms of any disease than worker b: αa > αb. For example,
workers a and b fall sick with the common cold on Monday, i.e., they suffer the same health
shock, but the realization that a gets is worse and she would need more time to recover. The
proposed model implies that worker a would file long sick leave claims: s∗a > s∗b. Nonetheless,
the perception parameter (α) is not identified. To see this, note that the utility of worker i explicitly
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accounting for her perception of a shock is:

u(si;φi,κi,wi,bi,θi,αi) = wi(M − si) + wiB(si) + φ̃i αi(sil(s
i; dowi)− θi) + φ̃iq 1{weekend}

− φ̃i
[
κi0(si − θi)2

1{si − θi > 0}+
3∑
j=1

κj1{si − θi = j}
]
.

The parameter αi is not separately identified from φi, i.e., φ̃iαi is observational equivalent to φi.
Nonetheless, it is not necessary to separately identify αi to derive the optimal sick pay policy.
What matters for the optimal design of the policy are workers’ responses to the incentives gener-
ated by the provision of sick pay. These responses are a function of the parameters φ, q, κ0, κ1, κ2,

and κ3 which are identified.

Rounding and measurement error. I include two additional mechanisms when estimating the
model to capture the behavior of physicians who prescribe sick leave claims in a reduced-form
way.42 First, I allow the duration of sick leave claims assigned to a worker to differ from the one
optimally chosen by the worker. This discrepancy allows the model to accommodate (i) informa-
tional frictions between a worker and a physician and (ii) observed sick leaves with a combination
of duration and day of the week that the model does not predict. I assume that the duration of
sick leave claims is measured with an additive error that has a mean zero and is uncorrelated
with the “true” sickness level. That is, I assume that given the optimal sick leave duration s∗, the
physician prescribes s̃:

s̃ = s∗ + δ ,

where δ is a mean-zero random variable with support [−3,3]. With probability pme, it takes the
values one or negative one; i.e., it shifts the duration of a sick leave claim by one day. With
probability p2

me, the duration of the sick leave claim is shifted two days. That is, δ takes the values
two or negative two. And a similar argument works for p3

me.
Second, I adjust the sick leave duration to consider the rounding or heaping observed in the

data. I interpret this pattern as coming from physicians being more likely to prescribe rest for a
number of days that is a multiple of seven. I assume that with some probability p7, a sick leave
claim of duration m is rounded up (down) to 7 days.

Estimation procedure. I estimate a vector of ten parameters: Λ = {q, µφ, σ2
φ, µκ0 , σ

2
κ0
, κ1, κ2,

42While explicitly modeling physician behavior is relevant for the design of paid sick leave, the lack of available
data on physicians’ characteristics limits our ability to address the question empirically.

25



κ3, pme, p7}. For this estimation, I select informative moments from the sick leave claims data and
use the SMM to estimate the vector of parameters that minimize the criterion function. Let G(Λ)

represent the vector of simulated moments and GE their empirical counterpart. I aim to find the
vector of parameters Λ that minimizes the squared distance between the simulated moments and
the moments computed from the data:

min
Λ

10∑
t=1

(
Gt(Λ)−GE

GE

)2

.

To compute the simulated moments, I draw a representative sample of the data. This sample
consists of a vector of wages, recovery times, and days of the week. The sample is stratified at the
workers’ group level.43 The main strength of this approach is that it does not impose parametric
assumptions on the distributions of wages and health shocks. Put another way, this strategy
allows for arbitrary correlation between the health shocks and workers’ wages to capture two
empirical facts: (i) as discussed in III.D, the duration of days on leave varies with income; and (ii)
diagnosis prevalence changes with the age and occupation of workers.

In the estimation, I exploit workers’ responses to the incentives created by sick insurance pro-
vision. That is, the estimation procedure relies only on workers’ observed decisions and does
not require imposing optimality of the current policy. Put another way, in the estimation of the
model, I do not assume that the current policy is the optimal one, I only need to assume that
workers are utility maximizers. This result relies on the fact that the worker’s problem can be
viewed as a two-stage problem. Once the health shock is realized, workers optimally choose their
sick pay utilization. Neither risk preferences nor production effects affect workers’ utility. Risk
preferences do not affect the utilization decision since the uncertainty is resolved once the health
shock is realized. The production effects are not internalized by workers: they take the share of
profits as given and not depending on their labor supply decision.44

IV.B Moments and Identification

Even though the parameters are jointly estimated, below I provide a heuristic discussion of the
most relevant moment for each parameter.

Weekend-streak utility (q). The term φq1{weekend} captures the extra utility that a worker de-
rives when the interaction of the sick leave claim duration and day of the week implies a streak of

43Table A.11 verifies balance in terms of workers’ characteristics and sick leave utilization between the sample
drawn for estimation of the model and the sample used to document workers’ behaviors and compute data moments.

44I assume that each worker is infinitesimal and her labor supply does not impact profits.
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days off work that includes the weekend, which I term a weekend-streak combination. To iden-
tify q, I exploit variation across days of the week on which a sick leave claim of duration s is filed.
That is, I rely on the fact that the temptation to extend a sick leave claim varies between days of
the week. For example, a 2-day-long sick leave claim is more attractive on a Thursday than on a
Tuesday. Figure 5 illustrates this variation.

The identification of q relies on the difference between the share of 1- to 5-day-long sick leave
claims filed on a weekend-streak day and the share of 1- to 5-day-long claims filed any other day
of the week. I pool all the weekend-streak combinations to compute the average share of claims
on those days and compare it with the average share of claims made during the rest of the week.
The model requires a higher q to rationalize the data if a larger difference is observed. This com-
parison relies on the idea that the share of sick leave claims of duration s on a non–weekend-streak
day is a good counterfactual to estimate the effect of filing a sick leave claim of duration s on a
weekend-streak day. The last panel of Figure 5 shows this moment graphically, and Table A11
presents detailed computations.

Compliance cost function (µκ0 , σ2
κ0
, κ1, κ2, κ3): I exploit variation across days of the week and sick

leave claims duration conditional on workers’ health to inform the distribution of compliance
costs. I consider the pool of workers with similar characteristics and the same assigned recovery
time—i.e., I hold fixed workers’ health, age, and occupation—and compare their demand for sick
pay across days of the week. For each day of the week and assigned recovery time, I compute the
share of sick leave claims, indexed by j, of duration s filed by workers with health θ:

sharedays,θ =

∑
j 1{dowj = day, sj = s, θj = x}∑

j 1{dowj = day, θj = x}
,

where the denominator counts the number of sick leave claims filed on day of the week day with
primary diagnoses that would require x days of leave and the numerator counts how many of
these claims have duration s. For example, the share of workers with a 1-day-long health shock
on a Friday who ask for a one-day-long leave is given by

shareFriday1,1 =

∑
j 1{dowj = Friday, sj = 1, θj = 1}∑

j 1{dowj = Friday, θj = 1}
.

Figure 6 illustrates this computation for sick leave claims with a health shock that requires a 1-
day-long recovery. I start by computing the share of claims filed for a duration that matches the
assigned recovery time on a weekend-streak day and compare this share with the share of claims
filed for an extra day on a weekend-streak day. That is, I compare Panel (a) vs. Panel (b) of
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Figure 6. This difference is informative on how costly it is for individuals to ask for an extra day
of leave. I restrict this comparison to claims filed for a combination of duration and day of the
week representing a weekend streak. This conditioning keeps the incentives for extending a sick
leave claim fixed. That is, every combination implies that workers would be on leave through the
weekend. These are the darker columns in Figure 6. Panel (c) of Figure 6 shows how costly it
would be to ask for two extra days of leave. Panel (f) summarizes the probabilities of not asking
for extra days of leave, asking for one extra day of leave, asking for two extra days of leave, and
asking for up to four extra days of leave conditional on filing a sick leave claim on a weekend-
streak day.

I perform these comparisons for sick leave claims with diagnoses assigned one, two, and three
days of rest (see Figures A8 and A9). To inform the distribution of compliance costs, I compute
the average share of claims with a given deviation. These shares are presented in Panel (a) of
Figure 7. The pattern in the data suggest that a one-day-long deviation is not too costly relative
to truth-telling while two-day deviations are more costly, as reflected by the lower share of sick
leave claims in the third column of this graph.

Value of time off work (µφ, σ2
φ): The parameter φ captures the taste for leisure relative to the taste

for consumption. It can therefore be identified by the average ratio of leisure to consumption.
I leverage data on wages, duration of sick leave claims, and sick pay to compute this ratio. I
compute consumption as the net earnings in a month using data on wages and sick pay, this is the
consumption measure implied by the model. To compute leisure, I use the number of days that a
worker is on leave. For worker i, this ratio is computed as follows:

LCi =
leisurei

consumptioni
=

1

N i

∑
m

wim × Days on leaveim
wim ×Days workedim + Sick payim

,

where m indexes the month of the year. N i is the number of months in the year in which worker
i used at least one sick leave claim. The numerator estimates worker i’s valuation of leisure in
month m, and the denominator estimates her consumption in month m. Thus, the ratio LCi is the
average relative valuation of leisure for individual i. Figure A10 shows the distribution of LCi;
the mean and standard deviation of this distribution inform the distribution of φ, which I assume
to be log-normal with mean µφ and standard deviation σφ.

Rounding and measurement error. I use the difference between the share of 5-day-long sick
leave claims filed on a Monday relative to the share of claims filed on a Tuesday, conditional on
health shocks with a 1-day recovery, to pin down the success probability of the measurement
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error term δ (see Panel (e) of Figure 6). Given the share of claims filed on a Monday, a smaller
difference implies that more sick leave claims have been moved away from the most-profitable
duration. That is, the smaller the difference, the more likely it is that the observed duration is
not the optimal one in terms of workers’ utility. To inform the probability of a sick leave claim
being rounded to duration that is a multiple of seven, I use the share of seven-day-long sick leave
claims.

V Results: Workers’ Behavior

V.A Parameter Estimates

Table 4 presents the values of the estimated parameters. I use the spikes in the share of claims filed
on weekend-streak days relative to non-weekend-streak days to identify the parameter governing
the utility that workers derive from sick leave claims that end on a Friday (q). I estimate that, all
else equal the utility of a worker increases in 0.79 for filing a sick leave claim weekend-streak
combination.

Conditional on their health shocks, I exploit the share of sick leave claims observed on weekend-
streak days to identify the parameters of the compliance cost function. Panel (b) of Figure 7 com-
pares targeted moments from the data and a model-simulated sample. The model matches the
distribution of compliance costs—i.e., the cost of reporting the true health shock—reasonable well
with µκ0 = 0.82 and σκ0 = 1.77.

I use the distribution of the ratio of leisure to consumption to identify the distribution of values
of time outside work, i.e., the distribution of the parameter φ. I estimate that, on average, workers
value time off work, either to recover from disease or to engage in leisure, about 45% more than
their wages. To put this estimate into context, consider that 26.54% of sick leave claims involve
non-paid time off, and a total of 67.60% of claims involve partial paid for workers—, i.e., 67.60%
of claims have a duration of up to 10 days for which the replacement rate is less than one.

V.B Workers’ responses

Exploiting these estimates, I document how sick leave taking behavior varies with changes in
the replacement rate. First, I document how workers’ behavior changes if the jump at 11 days
is reduced. I consider three alternative systems that keep the marginal replacement rates in each
bracket fixed—the slope of each payment function is one for claims above 4 days—and reduce
the size of the jump at 11 days. Panel (a) of Figure 8 presents the alternative payment schemes,
each scheme reduces the jump at 11 days in one day, the less generous alternative features no
discontinuity. Panel (b) shows the share of sick leave claims filed under each alternative system.
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Two main patterns arise. First, the mass at 11 days decreases monotonically as the jump at 11
days is reduced. Second, the share of sick leave claims filed for eight, nine, and ten days increases
as the discontinuity decreases. This result suggests that workers who would extend their time off
to 11 days to enter the “full insurance” region, find this behavior less attractive as the jump at 11
days decreases. I estimate that, on average, the share of 11-days-long sick leave claims declines in
0.1538 percent for each day that is not reimbursed. That is, when move from the current system to
the one that pays 10 days out of 11 days, the share of claims filed for 11 days decreases in 0.1417
percent. Similarly, when move from the current system to the one that pays 9 out of 11 days, the
share of claims decreases in 0.1565 percent, on average, per day.

V.C Model Fit

Matched moments. With the estimated parameters, the model matches the most relevant mo-
ments, presented in Table 5. There are, on average, 12.33% more sick leave claims on weekend-
streak days. The share generated by the model is very close: on average, I estimate 14.64% more
sick leave claims on weekend-streak days relative to non–weekend-streak days.

Panel (b) of Figure 7 compares the share of sick leave claims with non, one, and up to three-
days long deviation implied by the data and by a model-simulated sample. I overestimate the
share of claims with non deviations—i.e., claims with duration equal to the assigned diagnosis. I
slightly underestimate the share of claims for a day above the assigned diagnosis. Nonetheless,
the model replicates the decay in the share of sick leave claims with positive deviations quite
well. For example, a two-day deviation is more costly than a one-day deviation, as reflected by
the lower share of sick leave claims in this category.

The distribution of the ratio of leisure to consumption is assumed log-normal. Under this as-
sumption, the mean generated by the model is slightly higher than the observed in the data, while
the variance, on the other hand, is very close.

Specification Tests. I test how well the model matches data moments not used in the estimation.
Figure 9 compares the share of claims filed for a duration of 8 to 13 days from the data and a
model-simulated sample. The model captures the main pattern observed in the data: sick leave
claims spike at 11 days, with lower mass at 8, 9, and 10 days. In particular, using the measure of
heaping proposed by Roberts and Brewer (2001), I estimate that, in the data, the 11-day duration
accumulates an additional 4.50% mass than its neighbors. Using the model-simulated sample, I
estimate an additional 4.03% mass relative to its neighbors.45 The derivation of the optimal policy

45Roberts and Brewer (2001) proposes the following measure: hz = f(z) − f(z−1)+f(z+1)
2 , where z corresponds to

11 days, and f(·) indicates the frequency of sick leave claims with duration z. Thus, hz gives the difference between
a duration frequency and the average of the frequencies of the two immediately neighboring duration. It indicates
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requires an estimate of the moral hazard costs associated with this discontinuity, thus the impor-
tance of a precise estimate of workers’ responses to this feature of the paid sick leave contract.

Additionally, I construct the demand for days on leave as a function of the duration of the
health shock. For each duration, I compute how many days; on average, workers request to be
on leave. Figure A11 compares the average days on leave from the data and a model-simulated
sample. This figure tests the model’s ability to replicate workers’ sick leave utilization choices and
provides evidence that the model can replicate workers’ responses to different health shocks. It
is important that the model performs well on this dimension since the derivation of the optimal
policy relies on estimates of workers’ responses to changes in the paid sick leave policy.

I also propose an out-of-sample exercise exploiting data not used in the estimation of the
model. Using data on sick leave claims filed in 2019, I compute the vector of moments used
to estimate preference parameters and the share of claims with a duration in the neighborhood
of 11 days. I compare these moments with their model-simulated counterparts to test the model
performance. To obtain the latter, I simulate the model based on a representative sample drawn
from the 2019 data and the estimated vector of preference parameters. Table 6 presents the results
of this exercise. The results suggest that the model performs reasonably well out of the sample:
preference parameters and the share of sick leave claims of selected durations are comparable in
magnitude. Additionally, the model reproduces (i) the decay of the share of sick leave claims with
positive deviations and (ii) the excess mass at 11 days.

Robustness Checks: Moments’ computation. The estimation of the model relies the computation
of moments using data on all sick leave claims filed during the 2017. I ask whether the main
moments are affected by restricting the sample to specific times of the year, e.g., Winter.
Weekend-streak utility (q). In figures A12 to A15, I compute this moment restricting the sample
to claims filed during each quarter of the year. These figures show the same qualitative pattern
than Figure 5 providing evidence that claims from a particular time of the year, e.g., winter do not
drive the patterns in the data.
Compliance cost function (µκ0 , σ2

κ0
, κ1, κ2, κ3): Figure A16 proposes a similar exercise. I show the

distribution of share of sick leave claims with none and positive deviations for each quarter of
the year. This figure tells a similar story: the share of sick leave claims with no or one day devia-
tions are almost the same, and the share of sick leave claims corresponding to longer deviations
decreases monotonically.

how much a duration sticks out from the pattern suggested by its neighbors.
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VI The Optimal Sick Pay Contract: Derivation and Counterfactuals

I use the estimated model of workers’ behavior to determine the sick paid leave system that max-
imizes aggregate welfare. In this section, first I present the set of assumptions that I impose when
solving the social planner maximization problem. Second, I discuss what the optimal system is
and compare it with the current system. Finally, I present counterfactual analyses.

VI.A Solving the Social Planner’s Problem

I consider solutions of the social planners problem in the set of piece-wise linear contracts with
three-brackets. That is, when solving the welfare maximization problem I aim to find the marginal
replacement rate b within a sick leave duration bracket [s, s̄] that maximizes welfare given the
budget constraint. I restrict attention to contracts where s equals three days. That is, I con-
straint the solution to those contracts that reproduce the bracket systems summarized in Table
1.46 Motivated by the features of such contracts, I also assume that transfers are nondecreasing,
i.e., B(s + 1) ≥ B(s). Additionally, I constrain the system to be at most as generous as the full-
coverage case: B(s) ≤ s.

The derivation of the optimal contract relies on the estimates of workers’ preference parame-
ters discussed in the previous section and requires an estimate of risk preferences and the param-
eters of the production function. In the baseline estimates, I consider the case where the pareto
weights are the same for all workers.

Risk Aversion. Identification of γ would require, for instance, variation in plan choices across
workers. Nonetheless, the Chilean paid sick leave system does not offer choice over sick pay
plans. Absent this variation, I calibrate γ using results from the literature. I assume that γ = 2 and
present results with two alternative specifications that allow for preference heterogeneity.
Production costs. To quantify the cost of the production losses associated to the changes in the
sick pay policy, I need an estimate of the toll of sickness on workers’ productivity, i.e., an estimate
of ν. Unfortunately, my data do not allow a direct estimate. Thus, I rely on the estimate proposed
by Maestas et al. (2021). This estimate is based on the American Working Conditions Survey
(AWCS), which asks a nationally representative sample of U.S. adults to estimate their reduced
work productivity when working sick. In the main estimates of the optimal policy, I calibrate
ν = 0.77 and consider sensitivity checks regarding this assumption.

46Using the proposed framework, one could allow s to be a choice variable. Nonetheless, adding the brackets’ limit
as an additional choice variable increases the dimensionallity of the problem quickly. For example, if we consider the
set of contracts with two brackets, and allow bracket’s limits to take any value between 2 and 30 days there are 406
contracts. Then, for each contract one should find the vector of replacement rates that maximize welfare.

32



VI.B The Optimal Paid Sick Pay Contract

Figure 10 presents the total payment function implied by the optimal sick pay contract. The
total payment function could be interpreted as the monetary payment a worker with wage w =

1 would receive for a sick leave claim with the indicated duration. The optimal policy differs
from the current system in three key ways. First, it offers partial replacement, with an average
replacement rate of 0.36, for claims of up to three days. This shift increases the utility of workers
who would not take sick leave under the current system but do under the optimal policy. At the
same time, partial coverage constraints moral hazard since most of the cost of those absences is
faced by workers.

Second, the optimal policy eliminates the discontinuity at 11 days and exhibits a higher av-
erage replacement rate between 4 and 10 days. This feature curbs the cost of the behavioral re-
sponses to the program incentives and provides more risk protection. Implementing the optimal
scheme would shift the distribution of sick leave duration relative to the distribution of claims
under the current Chilean system: workers would be more likely to file sick leave claims between
8 and 10 days and less likely to file claims for 11 days.

Third, the optimal policy does not offer full replacement for sick leave claims longer than 11
days. The average replacement rate is increasing, as in the current system, but is less generous
for longer claims. Taken together, these changes in the replacement rate reflect that workers value
a contract that offers more protection for shorter claims to smooth consumption across different
health states. I estimate that workers are willing to give up 1.53% of their earnings to be insured
under the optimal policy.

Changes in compliance cost function. In this section, I examine how the optimal sick pay policy
changes when workers’ are more (less) reluctant to extend sick leave claims. First, all else equal, I
reduce the cost of filing a sick leave claim longer than the health state (θ). For example, the cost of
filing a sick leave claim for an extra day (f1) is given by:

f1 = f(s = θ + 1; θ) = κi0 + κ1 .

I use the estimates of (µκ0 , σκ0 , κ1, κ2, κ3) and construct a new distribution of compliance costs by
shifting the mean of κj such that E(κj) = µκj × (1 + ε) for ε = 0.10. The second exercise considers
the case where ε = −0.10.

Using these counterfactual compliance costs distributions, I first show workers’ choices as-
suming that they are insured under the Chilean paid sick leave system. Panel (a) of Figure 11
shows that when compliance costs are higher, the average number of days on leave more closely
reflects workers’ health state. In contrast, when compliance costs are low, workers’ ask for longer
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claims, given their health state. That is, in the scenario with low compliance costs, the average
duration of a sick leave claim for a given health shock is longer.

Panel (b) of Figure 11 presents the optimal policy for higher compliance costs and the policy for
lower compliance costs and compares it to that in the benchmark case. This exercise provides two
main lessons. First, when workers use sick leave claims that closely reflect recovery times, their
duration is shorter and the optimal contract is more generous. That is, the optimal contract offers
more coverage for all sick leave claims using the same budget as the baseline policy. Financing
a higher level of coverage is possible due to shorter sick leave claims—this is a mechanical ef-
fect—and smaller production losses. Second, when workers’ are more prompt to extending sick
leave claims, the optimal policy aims to contain these responses by lowering coverage for all du-
rations. The new policy is bellow the baseline case. This reduction is more marked for longer sick
leave claims. This result indicates that the savings from providing less coverage to longer claims
outweighs its utility costs—a reduction in coverage lowers the utility value of sick pay provision.

VII Conclusions

This paper addresses a relevant but poorly understood question in the provision of social insur-
ance: What is the optimal paid sick leave system? I answer this question by combining a unique
dataset on sick pay utilization and a model of insurance provision. I start by providing descrip-
tive evidence of the main determinants of workers’ behavior. I show three main empirical facts (i)
workers’ sick leave claim utilization varies with age and occupation; (ii) workers respond to the
discontinuity in the replacement rate bunching at 11 days; (iii) workers respond to nonmonetary
shifts in the temptation to extend their time off through the weekend.

Based on these facts, I develop a model of sick pay provision. The model gives three main
insights. First, workers demand sick pay by trading off the utility cost of working while sick with
the consumption loss from missing work when taking sick leave. The provision of sick pay lowers
the cost of absences, increasing sick pay utilization. This trade-off governs the moral hazard
cost of insurance provision. Second, sick leave insurance could generate production externalities
arising from extended absences and workers showing up sick (when their productivity is lower).
Third, the model provides intuition on the trade-off faced by the social planner (the insurer). The
optimal policy balances the benefits of risk protection with the cost associated with moral hazard
and production losses.

I use the estimated model of workers’ behavior to determine the sick paid leave system that
maximizes aggregate welfare. I limit attention to those payment schemes of the piece-wise linear
family. The optimal policy differs from the current system in three key ways. First, it offers
partial replacement, with an average replacement rate of 0.36, for claims of up to three days.
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Second, the optimal policy eliminates the discontinuity at 11 days and exhibits a higher average
replacement rate between 4 and 10 days. Doing so curbs the cost of the behavioral responses to
the program incentives and provides more risk protection. Third, the optimal policy does not
offer full replacement for sick leave claims longer than 11 days. The average replacement rate
is increasing, as in the current system, but it is less generous for longer claims. I estimate that
workers are willing to give up 1.53% of their earnings to be insured under the optimal policy.

The empirical application of this paper exploits the Chilean context but the insights are infor-
mative in other contexts and more generally for the discussion on sick pay policy design. Many
paid sick leave systems use the replacement rate as the relevant policy parameter. This paper pro-
vides a framework to study and quantify the main trade offs that arise when considering changing
this rate.
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VIII Figures

Figure 1: The Welfare Effects of Moral Hazard

(a) No externalities case

Marginal
utility 

of a day off
(𝑢𝑠)

Productivity
(𝜈)

Daily wage rate 
(𝑤)

𝑤 1− 𝑏

𝑤 1 − 𝑏′

𝑤

Inefficient  
absenteeism 

𝑏′ > 𝑏 ∶ increase sick 
leave generosity

Welfare effect of moral hazard

Δ Inefficient 
absenteeism

(b) Externalities case

Daily wage rate 
(𝑤)

𝑤 1− 𝑏𝑤

Health-related
productivity

(𝜈)

𝑤 1− 𝑏′

Inefficient  
absenteeism 

Efficient 
absenteeism 

Inefficient  
presenteeism  

Efficient 
presenteeism 

𝑏′ > 𝑏 ∶ increase sick 
leave generosity

Δ Inefficient  
absenteeism 

Δ Inefficient 
presenteeism

Welfare effect of moral hazard

Marginal
utility 

of a day off
(𝑢𝑠)

Notes: Panel (a) shows the effect of an increase in the replacement rate on absences in the no production externalities case. The provision of sick benefits gives rise to inefficient absenteeism: a pool of individuals
with marginal utility for time off below their marginal product (νi) takes a day off. An increase in the replacement rate accentuates this response increasing inefficient absenteeism. Panel (b) presents the case
where there are production externalities (ν < 1). The relation between wages, productivity, and the marginal value of a day off defines four regions. The top left area corresponds to the pool of individuals who
do not work (us > w(1− b)) and for whom this is efficient given their productivity (us > ν). I refer to this pool of workers as involved in efficient absenteeism. The bottom right area shows the opposite situation:
a pool of individuals who do work (us < w(1 − b)) and for whom this is the efficient response (us < ν). I refer to this pool of workers as involved in efficient presenteeism. The other two (darker) areas show
inefficient absences (us > w(1− b) and us < ν) and inefficient work (us < w(1− b) and us > v). This figure is referenced in Section II.C.
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Figure 2: Chilean paid sick leave system: benefits computation

(a) Days paid as a function of days on leave
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Notes: This figure shows the paid sick leave benefit scheme for private-sector employees. Panel (a) shows the
number of days paid as a function of days on leave. The replacement rate for the first three days of a sick leave spell
is zero. Starting on the fourth day, there is full coverage of each missed day—i.e., the replacement rate is one. If the
sick leave lasts 11 days or more, the nonpayable period is reimbursed. Panel (b) shows the average replacement rate,
i.e., the ratio between the number of days paid and the number of days on leave. This figure is referenced in Section
III.B.
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Figure 3: Duration of sick leave claims: Private-sector male workers

0

.2

.4

.6

.8

1

A
v

e.
 r

ep
la

ce
m

en
t 

ra
te

0

5

10

15

P
er

ce
n

ta
g

e 
o

f 
S

L
 c

la
im

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Sick leave claim duration

Notes: This figure shows the distribution of the duration of sick leave claims made by male workers on the
left-hand-side vertical axis and the average replacement rate on the right-hand-side vertical axis. The figure includes
only sick leave claims of up to 29 days; these represent 89% of all claims. This figure is referenced in Section III.D.

41



Figure 4: Sick leave duration: data and counterfactual distribution

(a) Distributions: data vs. counterfactual
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Notes: This figure shows the distribution of days on leave coming from the data, as shown in Figure 3, and the counterfactual distribution of days
on leave. The latter is constructed assigning to each sick leave the recovery time suggested by the Peruvian Handbook of Recovery Times, adjusted
by worker age and occupation. This figure is referenced in Section III.D.
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Figure 5: Days of the week and sick leave claim duration

(a) One day
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(c) Three days
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(e) Five days
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Notes: Panels (a) to (e) show the share of sick leave claims with duration s and the share of seven-day-long sick leave claims filed on each day of the week.
Panel (f) aggregates across durations and days of the week: The first bar—labeled “weekend streak”—averages the share of one- to five-day-long sick
leave claims that end on a Friday and are filed on any day of the week (for example, one-day-long claims filed on a Friday, two-day-long claims filed on a
Thursday, and so on). The second bar—labeled “non–weekend streak”—averages the share one- to five-day-long sick leave claims filed on any other day
of the week (for example, two-day-long claims filed on a Friday). Table A11 reports the estimated shares and moments. This figure is referenced in Sections
II.A and IV.B.
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Figure 6: Identification of compliance cost function: Sick leave claims by duration and day of the week
(one-day recovery time)

(a) Deviation = 0, duration = 1
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(b) Deviation = 1, duration = 2
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(c) Deviation = 2, duration = 3
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(d) Deviation = 3, duration = 4
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(e) Deviation = 4, duration = 5
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Notes: Panels (a) to (e) show the share of sick leave claims with duration s for workers whose main diagnosis would imply a health state of 1 day
on leave. Panel (f) aggregates the share of sick leave claims across days of the week, including only weekend-streak combinations; e.g., from Panel
(a), I consider only the share for Friday. This figure is referenced in Section IV.B.
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Figure 7: Compliance cost function

(a) Share of sick leave claims as a function of deviation
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(b) Model fit: Data vs. model moments

0

.1

.2

.3

.4

.5

S
h

a
r
e
 o

f 
S

L
 c

la
im

s

0 1 2 3 4

 

Data Model

Notes: Panel (a) shows the average share of sick leave claims with deviations between 0 and 4 days. The average is computed over sick leave claims
with primary diagnoses requiring 1, 2 or 3 days of rest filed on weekend-streak days. Each column is the weighted average of the probability for
each health state. Panel (b) replicates this figure and adds the moments computed from the simulated data. This figure is referenced in Section IV.B.
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Figure 8: Workers’ behavior: Changes in the discontinuity at 11 days

(a) Days paid as a function of days on leave
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(b) Share of SLC with durations around 11 days
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Notes: This figure shows workers responses to changes in the paid sick leave benefit scheme, relative to the current Chilean system. I consider three
alternative systems that keep the marginal replacement rates in each bracket fixed—the slope of each function is one for claims above 4 days—and
reduce the size of the jump at 11 days. Panel (a) presents the alternative payment schemes and Panel (b) shows the share of SLC filed under each
alternative payment scheme. This figure is referenced in Section V.A.
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Figure 9: Model’s fit: Distribution of sick leave claims with duration around 11 days

0

2

4

6

8

S
h

a
r
e
 o

f 
S

L
 c

la
im

s

8 9 10 11 12 13

Sick leave claim duration

Data Model

Notes: This figure compares the distribution of sick leave claims with a duration in the neighborhood of 11 days from
the data and a model-simulated sample. Using the measure of heaping proposed by Roberts and Brewer (2001), I
estimate that, in the data, the 11-day duration accumulates an additional 4.50% mass than its neighbors. Using the
model-simulated sample, I estimate an additional 4.03% mass relative to its neighbors. This measure approximates
how much a duration ‘sticks out’ from the pattern suggested by its neighbors. Roberts and Brewer (2001) proposes:
hz = f(z)− f(z−1)+f(z+1)

2 , where z corresponds to 11 days, and f(·) indicates the frequency of sick leave claims with
duration z. Thus, hz gives the difference between a duration frequency and the average of the frequencies of the two
immediately neighboring duration. This figure is referenced in Section V.C.
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Figure 10: The Optimal Sick Pay System
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Notes: This figure compares the Chilean system with the optimal paid sick leave system. It presents the total payment
function under each contract. This function could be interpreted as the monetary payment a worker with wage w = 1
would receive for a sick leave claim with the duration indicated in the horizontal axis. That is, this presents sick pay
as a function of the duration of a claim for a unitary wage. This figure is referenced in Section V.A.
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Figure 11: Counterfactual exercise: Changes in compliance cost

(a) Workers’ responses: Ave. number of days on leave
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(b) Optimal paid sick leave contract
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Notes: This figure presents the optimal policy under alternative distributions of compliance costs. Panel (a) summarizes workers behavior. It shows
the average duration of sick leave claims for the estimated distribution of compliance costs and for two alternative distributions. To construct
the high compliance costs distribution, I increase the average cost of an extra day off by 10%. Similarly, the low compliance costs distribution is
constructed by decreasing the average cost of an extra day off by 10%. Panel (b) shows the optimal policy under each of these distributions. This
figure is referenced in Section V.A.
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IX Tables

Table 1: Paid sick leave systems across countries

Country Design Benefits’ computation
Bulgaria bracket system - Days 1 to 3: rep. rate = 0.7

- Day 4 onward: rep. rate = 0.8
Chile bracket system - Days 1 to 3: rep. rate = 0

- Days 4 to 10: rep. rate = 1
- Days 11 onward: rep. rate = 1

and the waiting period is reimbursed
Estonia bracket system - Days 1 to 3: rep. rate = 0

- Day 4 and onward: rep. rate = 0.7
Finland bracket system - Days 1 to 9: rep. rate = 0

- Day 10 and onward: rep. rate = 0.7
France bracket system - Days 1 to 3: rep. rate = 0

- Day 4 and onward: rep. rate = 0.5
Greece bracket system - Days 1 to 3: rep. rate = 0.5

- Days 4 to 30 are paid with a rep. rate of 1
Ireland bracket system -Days 1 to 3: 6 working days

- Rates vary by earnings
Hungary bracket system - Days 1 to 15: rep rate = 0.7

- Days 16 onward: rep. rate = 0.5
Italy bracket system - Days 1 to 3: rep rate = 0

- Days 4 to 20: rep. rate = 0.5
- Days 21 onward: rep. rate = 0.66

Portugal bracket system - Days 1 to 3: rep rate = 0
- Days 4 onward: rep rate between 0.65 and 0.75

Spain bracket system - Days 1 to 5: rep rate = 0
- Days 6 to 20: rep. rate = 0.60
- Days 21 onward: rep. rate = 0.75

United Kingdom bracket system (hybrid) - Waiting period = 3 days , rep. rate = 0
- 99.35 pounds per week

Denmark linear system Replacement rate = 0.9
Netherlands linear system Replacement rate = 0.7
Norway linear system Replacement rate = 1
Poland linear system Replacement rate = 0.8
Switzerland linear system Replacement rate = 1
Germany linear system* - Days 1 to 42 : rep. rate = 1

- Week 7 onward: rep. rate = 0.7
Australia credit account 10 sick days per year
Austria credit account Six weeks full paid sick leave
Belgium credit account 30 sick days per year
United States credit account Average private-sector: < 10 days per year

Notes: This table summarizes sick paid systems for 22 countries. Bracket system refers vary the replacement rate based on the duration of a leave. Linear system feature a constant replacement rate.
Credit account refers to the case where paid leave is earned over time and unused leave accumulates, producing an employee-specific ”leave balance.” The UK system is hybrid because the second bracket
proposes a lump sum transfer. The German system a hybrid because it features a change in the replacement rate that kicks in after a long period. This table is referenced in Secntion II.C and in Section III.B.
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Table 2: Summary statistics: all workers and workers who use sick leave insurance

Workers who had used SL benefits

All workers Any
Included conditions

All Up to 30
days

(1) (2) (3) (4)

Age
Mean 43.94 43.41 43.30 42.24
Share of workers aged (%)

25 - 34 years old 26.35 28.90 29.14 32.11
35 - 44 years old 24.48 24.10 24.34 25.35
45 - 54 years old 26.70 24.71 24.66 23.73
55 - 64 years old 22.47 22.28 21.86 18.81

Income (monthly USD)
Mean 772.00 904.70 909.42 918.02
Standard deviation 367.27 388.79 389.99 390.03
25th percentile 484.45 587.51 591.79 601.77
Median 682.15 829.84 835.53 845.74
75th percentile 997.97 1,146.82 1,152.48 1,161.29
90th percentile 1,328.04 1,483.17 1,489.20 1,496.41

Region (%)
Central 34.97 40.76 41.22 41.92
Mining intensive 8.96 8.49 8.32 7.62

Health - chronic conditions (%)
Hypertension 12.90 16.12 15.96 13.93
Diabetes 6.04 7.95 7.51 6.19

Share of workers (%) 100 18.50 17.12 13.78
Observations 1,916,138 354,469 328,053 263,951

Notes: This table presents summary statistics for all male workers in the sample (column 1) and for workers who have
used sick leave benefits in the past year based on the conditions and duration of sick leave claims (columns 2 to 4).
The sample includes private and public sector employees age 25 to 64 years old. Income statistics are based on the
winsorized distribution where the lowest and highest 5% of the income values are excluded. Sick leave claims of up
to 30 days account for 95% of all claims filed in a year. This table is referenced in Section III.D.
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Table 3: Summary statistics: workers who use sick leave insurance by duration.

All Sick leave claims duration

1 to 3 days 4 to 10 days 11 to 29 days

(1) (2) (3) (4)

Age
Mean 42.00 39.40 41.79 43.97
Share of workers aged (%)

25 - 34 years old 33.07 41.74 33.74 26.38
35 - 44 years old 25.11 26.22 25.23 24.56
45 - 54 years old 23.50 19.82 23.15 26.10
55 - 64 years old 18.32 12.23 17.88 22.96

Income (monthly USD)
Mean 870.30 953.50 852.48 849.98
Standard deviation 367.30 386.19 353.57 358.76
25th percentile 569.20 645.54 564.03 552.85
Median 797.88 892.11 782.44 776.38
75th percentile 1,103.05 1,201.53 1,075.22 1,072.83
90th percentile 1,418.81 1,523.37 1,380.31 1,390.51

Region (%)
Central 48.35 59.10 48.05 43.78
Mining intensive 6.01 4.09 5.30 7.89

Health - chronic conditions (%)
Hypertension 14.34 11.46 14.48 17.17
Diabetes 6.22 4.64 6.21 7.92

Share of workers (%) 100 32.00 49.76 38.08
Observations 177,531 56,803 88,345 67,599

Notes: This table presents summary statistics for all male workers who have used sick leave insurance in the past
year. Column (1) presents characteristics of all workers who have filed at least one claim with duration of up to 30
days for conditions included in the analysis of this paper (see Table A4 for more details). Columns (2) to (4) present
characteristics of workers by duration of the sick leave claims filed. Columns (2) to (4) are not exhaustive, that is,
workers can be included in more than one category based on the claims they have filed. This table is referenced in
Section III.C.
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Table 4: Parameter Estimates

Parameter Description Value Std. error
Preferences parameters
q Weekend-streak utility 0.7894 0.2110
µ̃φ Value of time off relative to consumption, mean 56.8930 26.8567
σ̃φ Value of time off relative to consumption, std. dev. 39.8246 13.1373
µ̃κ0 Compliance costs, mean 0.8290 0.2320
σ̃κ0 Compliance costs, standard deviation 1.7714 0.2616
κ1 Cost of one day deviation 0.3594 0.0960
κ2 Cost of two days deviation 0.3217 0.0998
κ3 Cost of three days deviation 0.0041 0.0021

Measurement error
pme Prob. physician assigns one day more (less) than asked 0.2992 0.0430

Rounding
p7 Prob. SL duration is round to the closest multiple of 7 0.5746 0.1751

Notes: This table presents the estimated parameters for the model of workers’ behavior. I assume that the value of
time off relative to consumption is distributed log-normal, i.e., ln(φ) ∼ N(µφ,σ

2
φ). Thus, φ ∼ Lognormal(µ̃φ,σ̃2

φ). I
report (µ̃φ,σ̃φ). Similarly, I assume that the compliance cost parameter κ0 follows a log-normal distribution and I
report (µ̃κ0

,σ̃κ0
) which are the moments that characterize: κ0 ∼ Lognormal(µ̃κ0

,σ̃κ0
). The standard errors are based

on 200 bootstrap simulations. This table is referenced in Section V.
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Table 5: Moments used in the estimation.

Moments Data Model
(1) (2)

Preferences parameters
Weekend streak utility

Weekend streak days relative to non-streak days 0.1233 0.1546
Compliance costs

Sh. of SLC with 0 day deviation 0.4300 0.4635
Sh. of SLC with 1 day deviation 0.4120 0.3745
Sh. of SLC with 2 days deviation 0.2480 0.2401
Sh. of SLC with 3 days deviation 0.1975 0.1858
Sh. of SLC with 4 days deviation 0.1663 0.1371

Value of time outside work
Mean time outside work to consumption ratio 0.2972 0.3342
SD time outside work to consumption ratio 0.1962 0.1965

Measurement error
Sh. Monday SLC - sh Tuesday SLC
conditional to 5-days-long and a day of recovery 0.0822 0.0802

Rounding
Share of 7-days-long claims 0.1364 0.1050

Notes: This table presents the moments used to estimate the model’s parameter. Column 2
reports the data moments. Column 3 reports simulated moments.This table is referenced in
Section V.C.
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Table 6: Out-of-sample: selected moments from 2019 data and simulated counterparts

Moments Data Model
(1) (2)

Preference parameters
Weekend streak utility

Weekend streak days relative to non-streak days 0.1158 0.1428
Compliance costs

Sh. of SLC with 0 day deviation 0.4385 0.4611
Sh. of SLC with 1 day deviation 0.4223 0.3819
Sh. of SLC with 2 days deviation 0.2293 0.2330
Sh. of SLC with 3 days deviation 0.1843 0.1683
Sh. of SLC with 4 days deviation 0.1650 0.1232

Value of leisure
Mean leisure to consumption ratio 0.2993 0.3297
SD leisure to consumption ratio 0.1985 0.1980

Share of SLC - selected durations
7 days 0.1305 0.1053
8 days 0.0162 0.0162
9 days 0.0057 0.0262
10 days 0.0211 0.0461
11 days 0.0834 0.0939
12 days 0.0404 0.0535
13 days 0.0051 0.0172

Notes: This table presents results from an out-of-sample test of the model performance.
Column (1) is constructed using data on sick leave claims filed in 2019. The moments
included correspond to those used for the estimation of preference parameters and the shares
of claims with duration in the neighborhood of 11 days. To test the performance of the model,
I compare these moments with their model-simulated counterparts. These are presented in
column (2). To construct column (2) I simulate the model based on a representative sample
drawn from the 2019 data and the estimated vector of preference parameters. This table is
referenced in Section V.C.
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Appendix A. Additional Figures and Tables

A.I Additional Figures

Figure A1: Sick Pay Utilization with Linear Contract

(a) Full coverage (b = 1)
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(b) Unpaid sick leave (b = 0) and κ = 3
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(c) Partial coverage (b = 0.75) and κ = 3
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(d) Partial coverage (b = 0.75) and κ = 5
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Notes: This figure shows the optimal demand of days on leave s∗(θ) as a function of worker’s health status (θ) under
the assumption of linear contracts and quadratic penalties with different levels of coverage. This figure is referenced
in Section II.

56



Figure A2: Worker vs Social Planner trade-offs: externalities and no insurance provision

(a) Worker trade-off
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(b) Social Planner trade-off: optimal employment
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Notes: Panel (a) summarizes workers’ choices. Absent of sick pay, worker i takes a day off if uis > wi, this corresponds to the solid fill area. Note that some workers optimally choose to work even if their value
of a day off is above their productivity (ν). This is the pattern fill area located above the horizontal line. This is a consequence of the fact that wages do not longer reflect productivity. Panel (b) shows the optimal
employment decision. This trade-off compares the productivity of working with the value of a day off. Absent of sick pay, it would be efficient that worker i takes a day off if her valuation is above her marginal
product when sick, i.e., when uis > ν. This corresponds to the solid fill area located above the horizontal line. Note that some workers would find optimal to not work regardless: those with uis > wi. This figure
is referenced in Section II.C.
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Figure A3: Distribution of monthly income (in USD). Workers eligible to file a sick leave claim
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Notes: This figure shows the distribution of monthly income (in USD) for workers eligible to file a sick leave claim
in 2017. The vertical line indicates the income level associated with the maximum benefit threshold. This figure is
referenced in Section III.B.
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Figure A4: Distribution of sick leave claims by duration and day of the week.
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(b) Ten and eleven days long
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(c) Twelve and thirteen days long
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(d) Fourteen and fifteen days long
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Notes: This figure shows the share of sick leave claims of duration s filed on each day of the week. Each panel
aggregates sick leave claims with consecutive duration as stated in the title. This figure is referenced in Section IV.B.
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Figure A5: Histogram of days on leave by worker characteristics

(a) 25–34 years old, blue-collar
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(b) 25–34 years old, white-collar
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(c) 55–64 years old, blue-collar
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(d) 55–64 years old, white-collar
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Notes: This figure shows the distribution of days on leave by worker age and occupation for the youngest and oldest group of workers. The
sample includes male private-sector employees. Blue-collar workers refers to workers who engage in hard manual labor, typically agriculture,
manufacturing, construction, mining, or maintenance. White-collar workers refers to workers whose daily work activities do not involve manual
labor—e.g., teachers or administrative staff. Additional groups are presented in Appendix Figure A6. This figure is referenced in Section III.D and
in Section IV.A.
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Figure A6: Histogram of days on leave by workers characteristics

(a) 35-44 years old. Blue-collar

0

5

10

15

20
P

er
ce

n
ta

g
e 

o
f 

S
L

 c
la

im
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Sick leave claim duration

(b) 35-44 years old. White collar
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(c) 45-54 years old. Blue-collar
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(d) 45-54 years old. White collar
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Notes: This figure shows the distribution of days on leave by workers’ age and occupation for the youngest and oldest group of workers.
Sample includes male private-sector employees. Blue-collar worker refers to workers who engage in hard manual labor, typically agriculture,
manufacturing, construction, mining, or maintenance. White-collar worker refers to workers whose daily work activities do not involve manual
labor—e.g., teachers or administrative staff. Additional groups are presented in Appendix Figure A5. This figure is referenced in Section III.C and
in Section IV.A.
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Figure A7: Histogram of days on leave by workers characteristics
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(b) 25-34 years old. White collar
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(c) 55-64 years old. Blue-collar
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(d) 55-64 years old. White collar
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Notes: This figure shows the probability that a worker contracts disease d by by workers’ age and occupation for the youngest and oldest group of
workers. Diseases are ordered as presented in Table A9. Sample includes male private-sector employees. Blue-collar worker refers to workers who
engage in hard manual labor, typically agriculture, manufacturing, construction, mining, or maintenance. White-collar worker refers to workers
whose daily work activities do not involve manual labor—e.g., teachers or administrative staff. This figure is referenced in Section IV.B.
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Figure A8: Identification of compliance costs parameter: Sick leave claims by duration and day of the week.
Health shock (θ) equals 2-days-long.

(a) Deviation = 0, duration = 2
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(b) Deviation = 1, duration = 3
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(c) Deviation = 2, duration = 4
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(d) Deviation = 3 , duration = 5
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(e) Aggregate across days of the week
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Notes: Panels (a) to (d) show the share of sick leave claims with duration s for workers whose main diagnose would implied a health state of 2 days
on leave. Panel (e) aggregates the share of sick leave claims across days of the week, including only the weekend-streak combinations, e.g., from
panel (a) I only consider the share for Thursday. This figure is referenced in Section IV.B.
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Figure A9: Identification of compliance costs parameter: Sick leave claims by duration and day of the week.
Health shock (θ) equals 3-days-long.
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(b) Deviation = 1, duration = 4
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(c) Deviation = 2, duration = 5
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(d) Aggregate across days of the week
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Notes: Panels (a) to (c) show the share of sick leave claims with duration s for workers whose main diagnose would implied a health state of 3 days
on leave. Panel (d) aggregates the share of sick leave claims across days of the week, including only the weekend-streak combinations, e.g., from
panel (a) I only consider the share for Wednesday. This figure is referenced in Section IV.B.
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Figure A10: Distribution of leisure to consumption ratio from raw data
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Notes: This figure shows the distribution of the leisure to consumption ratio LCi. This figure is referenced in Section
IV.B.
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Figure A11: Demand for days on leave as a function of health shock
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Notes: This figure shows the demand for days on leave as a function of the duration of the health shock from the data
and a model-simulated sample. For each duration, I compute how many days; on average, workers request to be on
leave. The 45 degrees line can be interpreted as the demand for days on leave when workers report their health. The
horizontal line at 11 days indicates the position of the discontinuity in the sick pay scheme. This figure is referenced
in Section V.C.
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Figure A12: Days of the week and sick leave claim duration. Conditional to first quarter of the year (Summer quarter).
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(e) Five days long
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Notes: Panels (a) to (e) show the share of sick leave claims with duration s and the share of seven-days-long sick leave claims filed on each day of the week. Panel (f) aggregates across duration
and days of the week: the first bar—labeled “weekend streak”—averages the share of one-to-five-days-long sick leave claims that end of a Friday and are filed any day of the week. For example,
one-day-long on Friday, two-days-long on a Thursday, and so on. The second bar—labeled “non-weekend streak”—averages the share one-to-five-days-long sick leave claims filed any other
day of the week. For example, two-days-long claims file on Friday. This figure is restricted to sick leave claims filed during the first quarter of the year (Summer quarter in Chile). This figure is
referenced in Section ??.
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Figure A13: Days of the week and sick leave claim duration. Conditional to the second quarter of the year (Fall quarter).
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Notes: Panels (a) to (e) show the share of sick leave claims with duration s and the share of seven-days-long sick leave claims filed on each day of the week. Panel (f) aggregates across duration
and days of the week: the first bar—labeled “weekend streak”—averages the share of one-to-five-days-long sick leave claims that end of a Friday and are filed any day of the week. For example,
one-day-long on Friday, two-days-long on a Thursday, and so on. The second bar—labeled “non-weekend streak”—averages the share one-to-five-days-long sick leave claims filed any other
day of the week. For example, two-days-long claims file on Friday. This figure is restricted to sick leave claims filed during the second quarter of the year (Fall quarter in Chile). This figure is
referenced in Section ??.
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Figure A14: Days of the week and sick leave claim duration. Conditional to the third quarter of the year (Winter quarter).
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Notes: Panels (a) to (e) show the share of sick leave claims with duration s and the share of seven-days-long sick leave claims filed on each day of the week. Panel (f) aggregates across duration
and days of the week: the first bar—labeled “weekend streak”—averages the share of one-to-five-days-long sick leave claims that end of a Friday and are filed any day of the week. For example,
one-day-long on Friday, two-days-long on a Thursday, and so on. The second bar—labeled “non-weekend streak”—averages the share one-to-five-days-long sick leave claims filed any other
day of the week. For example, two-days-long claims file on Friday. This figure is restricted to sick leave claims filed during the third quarter of the year (Winter quarter in Chile). This figure is
referenced in Section ??.
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Figure A15: Days of the week and sick leave claim duration. Conditional to the third quarter of the year (Spring quarter).
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(c) Three days long
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(d) Four days long
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(e) Five days long
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(f) Aggregate across days of the week
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Notes: Panels (a) to (e) show the share of sick leave claims with duration s and the share of seven-days-long sick leave claims filed on each day of the week. Panel (f) aggregates across duration
and days of the week: the first bar—labeled “weekend streak”—averages the share of one-to-five-days-long sick leave claims that end of a Friday and are filed any day of the week. For example,
one-day-long on Friday, two-days-long on a Thursday, and so on. The second bar—labeled “non-weekend streak”—averages the share one-to-five-days-long sick leave claims filed any other day
of the week. This figure is restricted to sick leave claims filed during the fourth quarter of the year (Spring quarter in Chile). This figure is referenced in Section ??.
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Figure A16: Compliance cost function by quarter.
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(b) Quarter 2 (Fall)
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(c) Quarter 3 (Winter)
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(d) Quarter 4 (Spring)
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Notes: Panels (a) to (d) show the average share of sick leave claims with deviations between 0 and 4 days for each quarter. Summer quarter goes from Jan
to March. The average is computed over sick leave claims with primary diagnosis requiring 1, 2 or 3 days of rest filed on a weekend streak days. This figure
is referenced in Section ??.
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A.II Additional Tables

Table A1: Summary statistics by healthcare insurance provider

Government-run Private Year(s)
insurance insurance

(1) (2) (3)
Panel A. Enrollees Characteristics
Share of enrollees aged

25 - 34 25.06 31.76 2015-2019∗

35 - 44 21.51 28.84 2015-2019∗

45 - 54 21.11 20.12 2015-2019∗

55 - 64 14.64 11.47 2015-2019∗

Share female enrollees 0.44 0.35 2015-2019∗

Wages (in USD monthly)
Average 761.27 1,824.94 2015-2019∗

Enrollees w/ wage above median (%) 34.44 86.69 2015-2019∗

Metropolitan region (%) 38.04 60.01 2015-2019∗

Mining sector (%) 0.50 2.49 2015-2019∗

N of enrollees 4,503,474 1,689,240 2015-2019∗

Share (%) 72.72 27.28 2015-2019∗

Panel B. Sick Leave Claims
Ratio SL claims to enrollees (%)

2015 77.66 86.53 2015
2019 98.42 90.66 2019

Approved SL claims (%) 91.94 74.54 2015-2019
Rejected SL claims (%) 5.31 14.76 2015-2019
Ratio days on leave to SL claim 13.09 10.24 2015-2019
Annual cost per enrollee (in USD) 240.69 463.61 2015-2019
Ratio of total annual cost 24.91 58.90 2015-2019
to paid days on leave
Annual cost

percentage of mandatory contribution 2.6 2.1 2015-2019
as percentage of GDP 0.51 0.37 2015-2019

N of sick leave claims 3,910,482 1,473,540 2015-2019
Share (%) 72.63 27.37 2015-2019

Notes: Panel A presents summary statistics of individuals enrolled in plans offered by each healthcare insurance provider. Only individuals eligible to file a sick leave claim are included in the
computations. Panel B shows characteristics of the sick leave claims handled by each insurer. Data come from the Annual Statistics of the Sick Leave System published by the Social Security
Administration (SUSESO, 2020; 2019; 2018; 2017; 2016). The reported data are annual counts. Statistics in this table correspond to averages for 2015 - 2019, ∗ indicates that data for 2018 are not
available. The median monthly wage is computed from the 2017 CASEN survey, and using this figure I compute the share of workers with monthly salary above the median. GDP data comes
from the World Bank national accounts data. SL stands for sick leave. This table is referenced in Section III.A.
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Table A2: Average recovery times - Examples from Peruvian Handbook

Workers’ characteristics and Correction factor and
diagnoses recovery time

Example 1
Lumbago with sciatica (M544) 14
43 years old 1.05
Operator/manual worker (blue collar) 1.5
Optimal time 22.05

Example 2
Common cold (J00) 3
25 years old 0.87
Teacher (white collar) 0.75
Optimal time 2

Example 3
Infectious gastroenteritis (A09) 2
57 years old 1.3
Office manager (white collar) 0.75
Optimal time 2

Notes: This table presents examples on how to construct the average recovery time
based on workers’ characteristics and sick leave diagnoses. This table is referenced in
Section III.C and Section IV.B.
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Table A3: Sick leave claims and sick leave spells definitions

(1) (2) (3)
Number of sick leave claims 1,483,103 657,125 551,647
Number of sick leave spells 1,030,613 437,418 365,127

N of SL claims in a spell (% of claims)
One claim 55.43 51.71 51.22
Two claims 16.85 17.19 17.30
Three claims 7.30 7.93 8.00
Four claims 4.49 5.06 5.12
Five claims 3.19 3.63 3.67
Six or more claims 12.75 14.48 14.70

Among sick leave spells with more than 1 claim∗ (% of claims)
Diagnoses change within spell

Yes — 4 digits disease code 30.83 30.01 29.97
Yes — 3 digits disease code 28.67 27.86 27.82

Physician change within spell 31.21 30.87 30.83

Sample: Private sector workers
Gender All Male Male
Age 18-70 18-70 25-64

Notes: This table presents counts and summary statistics of sick leave claims and sick leave spells. A spell is a
group of consecutive claims—these are considered one claim for the computation of sick leave benefits. The first
row counts each sick leave claim as one observation and the second row considers the number of sick leave spells.
The subsequent rows explore the composition of a spell in terms of number of claims and whether diagnoses and
physicians changed withing a spell. ∗ indicates that proportions are computed for spells composed by two to five
sick leave claims. This table is referenced in Section III.B and in Section III.C.

74



Table A4: Conditions included in the analysis by ICD-10 group

Included Sick leave claims

ICD Group Description (=1 if yes) Number Share (%)

(1) (2) (3)
A00-B99 Certain infectious and parasitic diseases 1 31,244 8.56
C00-D49 Neoplasms 0 6,515 1.78
D50-D89 Blood and blood-forming organs 0 478 0.13
E00-E89 Nutritional and metabolic diseases 0 3,842 1.05
G00-G99 Nervous system 1 8,758 2.40
H00-H59 Eye and adnexa 1 6,141 1.68
H60-H95 Ear and mastoid process 1 6,246 1.71
I00-I99 Circulatory system 1 15,139 4.15
J00-J99 Respiratory system 1 64,823 17.75
K00-K95 Digestive system 1 25,854 7.08
L00-L99 Skin and subcutaneous tissue 0 8,762 2.40
M00-M99 Musculoskeletal system 1 108,908 29.83
N00-N99 Genitourinary system 1 11,605 3.18
O00-O9A Pregnancy and childbirth 0 <50 0.01
P00-P96 Certain conditions of the perinatal 0 149 0.04
Q00-Q99 Congenital malformations 0 331 0.09
R00-R99 Abnormal clinical and laboratory findings 1 9,840 2.69
S00-S99 Injuries 1 44,922 12.30
T00-T88 Poisoning and external causes 0 4,385 1.20
U00-U85 Codes for special purposes 0 <50 0.00
V00-Y99 External causes of morbidity 0 3,578 0.98
Z00-Z99 Contact with health services 0 3,577 0.98
Total included 329,312 90.19
Total 365,127

Notes: This table reports the health conditions included in the analysis, the number of sick leave claims filed in 2017,
and what share these represent of the universe of claims. The criteria for excluding the selected health conditions is
discussed in detailed in Section Appendix B. This table is referenced in Section III.C.
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Table A5: Average recovery time by workers characteristics

25 - 34 years old 35 - 44 years old 45 - 54 years old 55 - 64 years old

ICD group Main diagnoses Blue c. White c. Blue c. White c. Blue c. White c. Blue c. White c.
(1) (2) (3) (4) (5) (6) (7) (8)

A00-A99 Infectious gastroenteritis 2 1 3 2 3 2 3 2
G00-G99 Migraine and headaches 3 2 4 2 4 2 5 3
G00-G99 Carpal tunnel syndrome 13 8 17 10 17 10 21 13
H00-H59 Conjunctivitis 5 3 7 4 7 4 9 5
H60-H95 Vertigo 4 2 5 3 5 3 6 4
I00-I99 Hypertension 4 3 6 3 6 3 7 4
I00-I99 Myocardial infarction 16 10 21 13 21 13 26 16
J00-J06 Common cold 3 2 4 2 4 2 5 3
J09-J18 Influenza and pneumonia 4 3 5 3 5 3 6 4
J20-J22 Bronchitis 5 3 7 4 7 4 8 5
J23-J99 Other respiratory diseases 8 5 9 6 9 6 11 7
K00-K95 Noninfective gastroenteritis 2 1 2 1 2 1 3 2
K00-K95 Inguinal hernia 6 4 9 5 9 5 11 7
M50-M54 Chronic low back pain 10 6 12 7 12 7 14 8
M50-M54 Lumbago with sciatica 10 6 12 7 12 7 14 8
M60-M79 Tendinitis 8 5 9 6 9 6 10 6
M60-M79 Shoulder lesions 8 5 9 6 9 6 10 6
Other M Arthritis 9 5 10 6 11 6 12 7
Other M Knee injuries 12 7 14 8 14 8 16 10
N00-N99 Renal colic 4 3 5 3 5 3 6 4
R00-R99* Abdominal and pelvic pain 2 1 3 2 3 2 3 2
S00-S99 Injuries (e.g., sprain ankle) 14 8 16 9 16 9 18 11

Notes: This table shows the average recovery time by workers’ age and occupation type for 22 disease groups. Blue c. stands for blue collar and
white c. stands for white collar. Table A6 indicates what occupations and industries are classified as blue and white collar. This table is referenced in
Section III.C and Section IV.B.
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Table A6: Workers’ occupation, industry and manual work classification

Occupation Industry Blue collar (=1 if yes)
(1)

Executive, managers Any 0
Professor, lecturer, teacher Any 0
Other professional Any 0
Sales representative Any 0
Admin staff Any 0
Factory worker Any 1
Trabajador de casa particular Any 1
Technician Any 1
Unknown Agriculture 1

Unknown Natural Resources and
mining 1

Unknown Manufacturing 1
Unknown Construction 1
Unknown Utilities 1
Unknown Retail trade 0

Unknown Transportation, warehousing
and telecommunications 1

Unknown Service-Providing Industries 0
Unknown Public administration 0
Unknown Not specified n.a.

Notes: This table reports workers’ occupation, industry, and whether its combination implies the worker is
considered a blue-collar (or manual) worker or not. If information is available on occupation and industry, I use
worker’s occupation to classified the worker as a blue-collar. If occupation is not available, I use workers’ industry
information. When neither occupation or industry is available, I drop observations for this worker. “n.a.” stands for
not applicable. This table is referenced in notes to Table A5 and in Section III.C.
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Table A7: Sample construction

2017
Panel A. Sick leave claims
Single claims - from clean dataset 2,698,993

Observations without demographic information 22,757
Workers’ age not in the interval [18,70] 50,369
Worker is not Chilean 61,740
Worker not enrolled in a public insurance plan 33,560
Observations without income information 8,920

Observations 2,521,647

Panel B. Sick leave spells
Single spells 1,825,904
Condition on private sector workers 1,030,613
Condition on male workers 437,418
Condition on ages 25-64 365,127
Condition on diagnoses included in analysis 329,312

Notes: Panel A of this table shows the counts of sick leave claims drop due to each sample
selection criterion. Panel B shows the counts of sick leave spells—consecutive claims with
continuous start and end dates—for each sample selection criterion. A complete list of diag-
noses included in the analysis is provided in Table A4. This table is referenced in Section III.C.
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Table A8: Summary statistics: Private sector workers who have used SL benefits

Any
Included conditions

All Up to 30 days

(1) (2) (3)

Age
Mean 43.39 43.25 42.00
Share of workers aged (%)

25 - 34 years old 29.21 29.51 33.07
35 - 44 years old 23.71 23.98 25.11
45 - 54 years old 24.70 24.63 23.50
55 - 64 years old 22.38 21.89 18.32

Income (monthly USD)
Mean 857.97 862.72 870.30
Standard deviation 367.59 368.79 367.30
25th percentile 555.28 559.42 569.20
Median 782.85 788.21 797.88
75th percentile 1,089.33 1,095.32 1,103.05
90th percentile 1,408.30 1,414.46 1,418.81

Region (%)
Central 46.78 47.32 48.35
Mining intensive 6.77 6.67 6.01

Health - chronic conditions (%)
Hypertension 16.89 16.71 14.34
Diabetes 8.24 7.79 6.22

Share of workers (%) 100.00 92.59 72.16
Observations 246,017 227,797 177,531

Notes: This table presents summary statistics for all male workers who had used sick leave benefits in the past year
based on the conditions and duration of sick leave claims. The sample includes private sector employees age 25 to 64
years old. Income statistics are based on the winsorized distribution where the lowest and highest 5% of the income
values are excluded. Sick leave claims of up to 30 days account for 95% of all claims filed in a year. This table is
referenced in Section III.C.
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Table A9: Probability of filing a SLC for each disease group by workers’ characteristics

25 - 34 years old 35 - 44 years old 45 - 54 years old 55 - 64 years old

ICD group Main diagnoses Blue c. White c. Blue c. White c. Blue c. White c. Blue c. White c.
(1) (2) (3) (4) (5) (6) (7) (8)

A00-A99 Infectious gastroenteritis 12.36 18.26 8.91 13.06 6.51 9.36 4.80 6.57
G00-G99 Migraine and headaches 1.64 2.28 1.57 1.86 1.19 1.64 0.89 1.14
G00-G99 Carpal tunnel syndrome 1.13 1.08 1.31 1.30 1.48 1.31 1.63 1.33
H00-H59 Conjunctivitis 1.57 1.46 1.92 2.40 2.40 2.40 3.03 3.19
H60-H95 Vertigo 1.08 1.24 1.32 1.23 1.85 1.68 2.49 2.64
I00-I99 Hypertension 1.09 0.80 1.88 1.70 2.95 2.85 4.16 3.81
I00-I99 Myocardial infarction 0.12 0.08 0.31 0.34 0.77 0.71 1.55 1.38
J00-J06 Common cold 11.89 17.12 10.64 14.87 8.62 12.79 6.34 10.17
J09-J18 Influenza and pneumonia 3.31 3.92 3.78 4.66 4.68 4.88 5.53 5.58
J20-J22 Bronchitis 5.44 6.44 5.91 7.33 7.18 8.35 8.06 10.80
J23-J99 Other respiratory diseases 0.96 1.00 1.11 1.13 1.30 1.37 1.74 1.71
K00-K95 Noninfective gastroenteritis 5.34 5.99 4.19 4.99 3.95 4.57 3.34 3.93
K00-K95 Inguinal hernia 1.93 1.62 3.02 2.87 3.82 4.02 4.48 4.73
M50-M54 Chronic low back pain 16.85 12.35 16.73 12.78 14.17 11.43 12.02 10.02
M50-M54 Lumbago with sciatica 6.37 4.86 8.11 6.33 7.54 6.60 6.70 5.87
M60-M79 Tendinitis 5.17 3.56 5.99 4.37 6.55 4.98 6.67 4.95
M60-M79 Shoulder lesions 2.47 1.79 3.78 2.49 4.62 3.61 4.43 3.11
Other M Arthritis 1.91 1.34 2.25 1.79 3.11 2.63 4.38 3.63
Other M Knee injuries 0.57 0.41 0.70 0.66 1.16 0.99 1.61 1.33
N00-N99 Renal colic 2.42 2.12 3.06 3.23 3.63 3.47 4.29 4.48
R00-R99* Abdominal and pelvic pain 2.19 2.38 1.99 2.37 2.38 2.72 3.01 2.83
S00-S99 Injuries (e.g., sprain ankle) 14.19 9.89 11.53 8.25 10.13 7.64 8.87 6.82

Notes: This table shows the probability of filling a sick leave claim for each disease (d) by workers’ group (b). Each of these probabilities is computed
as the ratio of sick leave claims with diagnosis d and all claims from group b, thus columns add up to 100. Main diagnoses indicates the most
common condition for a disease group. Blue c. and white c. stand for blue-collar and white-collar occupations respectively. These probabilities are
plotted in Figure A7. This table is referenced in Section III.D.

80



Table A10: Number of business days on leave (sl)

Number of days on leave (sc)

Day of the week (dow) 1 2 3 4 5 6 7 8
Monday 1 2 3 4 5 5 5 6
Tuesday 1 2 3 4 4 4 5 6
Wednesday 1 2 3 3 3 4 5 6
Thursday 1 2 2 2 3 4 5 6
Friday 1 1 1 2 3 4 5 6

Notes: This table shows the number of business days on leave (sl) as a function
of (total) days on leave (sc) and day of the week (dow) a sick leave claim is filed.
This table is referenced in Section II.A.
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Table A11: Identification of weekend-streak utility parameter (q): estimates from raw data

Day of the week

Duration Weekend streak Non-weekend streak Difference

(1) (2) (3)
1 day long 0.1219 0.0355 0.0864
2 days long 0.2062 0.0672 0.1391
3 days long 0.2872 0.1482 0.1390
4 days long 0.1640 0.0489 0.1151
5 days long 0.2330 0.1216 0.1114

Simple average 0.2025 0.0843 0.1182
Weighted average 0.2274 0.1041 0.1233

Notes: This table presents the distribution of sick leave claims by duration and day of the week.
Weekend streak refers to the day of the week a sick leave claim should start to finish on Friday. For
example, when duration is one day, weekend streak refers to Friday, when duration is two days,
it refers to Thursday. The non-weekend streak category groups all the other days of the week.
The share of sick leave claims of duration s filed on day dow is computed as the ratio between
the number of claims with duration s filed on dow and the number of claims of filed on dow with
duration between one and fifteen days. Figure 5 presents this table graphically. This table is
referenced in Section IV.B.
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Appendix B. Distribution of health states

The Peruvian Handbook of Recovery Times specifies an average recovery time for 2,763 unique
disease codes at the fourth digit level of the 10th revision of the ICD. This paper focuses on non-
mental health conditions; excluding these diagnoses reduces the number of unique diseases to
2,690.47 Estimating the model with such level of granularity is unfeasible: it would require esti-
mating a probability for each disease and group of observable characteristics (2,690 diagnoses× 4
age group× 2 occupation groups = 21,520). For this reason, I group diagnoses in more aggregated
categories.

I these categories considering (i) the type of diseases they represent and (ii) how frequently
these diagnoses are used in the claims data. Table A4 lists the conditions included in the analysis
by their ICD 10th revision group and the share of sick leave claim data with these diagnoses. To
compute these shares, I used the sample constructed for the quantitative analysis of this paper.
Table A7 provides details on sample construction.

The first criteria for excluding a group of conditions are those not listed in the Peruvian hand-
book. These are conditions originating in the perinatal period (codes in groups P00-P96) and
congenital malformations, deformations, and chromosomal abnormalities (codes in groups Q00-
Q99). In fact, 0.15% of the sick leave claim data is reported under these diagnoses. I dropped such
observations.

The second criteria for excluding a group of conditions is the nature of the diagnosis which
makes very challenging to assign a benchmark recovery time. I exclude poisonings and burns
(codes in group T00-T98)—these diagnoses accumulate 1.22% of the sick leave claim data. Ad-
ditionally, I exclude diseases coded under “special purposes codes” (codes U00-U85), external
causes of morbidity (codes V00-Y99), and factor influencing health status and contact with health
services (codes Z00-Z99 ). All these together represent 3.16% of the sick leave claims. These con-
ditions associated with longer recovery times or impairments where full recovery might not be
foreseeable, for example, leg amputations and organs transplants. Finally, I exclude conditions
with diagnoses C00-D49; these codes are used for neoplasms, which in most cases, are chronic
conditions or diseases that would require a longer recovery time. In terms of claims data, these
represent 1.78% of the claims. The final sample includes about 86% of all sick leave claims filed
by private-sector male workers.

47I use codes F01-F99 to define mental health conditions, these are grouped under the chapter “Mental, Behavioral
and Neurodevelopmental disorders”.
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